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Abstract

Inaccurate cost estimates are a recurrent problem for Department of Defense
(DoD) acquisition programs, with cost overruns exceeding billions of dollars each year.
These estimate errors hinder the ability of the DoD to assess the affordability of future
programs and properly allocate resources to existing programs. In this research, the
author employs a novel approach called “macro-stochastic” cost estimation for
significantly reducing cost estimate errors in Major Defense Acquisition Programs
(MDAPSs). To achieve this reduction, the author first extracts and catalogs key
programmatic data from 936 Selected Acquisition Reports. The author then analyzes
historical trends in the data using mixed-model regression with high-level descriptive
program parameters. Based on these trends, the model is found to reduce estimate errors
by 18.7 percent on average, when applied to a randomly selected, historical cost estimate.
However, the model is most beneficial when applied early in program life; when applied
to the first cost estimate of each program in the database, the macro-stochastic technique
reduces cost estimate error by over one-third. This statistically and economically
significant reduction could potentially allow for reallocation of $6.25 billion, annually, if

applied consistently to the DoD’s portfolio of MDAPs.
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A MACRO-STOCHASTIC APPROACH TO IMPROVED COST ESTIMATION
FOR DEFENSE ACQUISITION PROGRAMS

l. Introduction

General Issue

The Department of Defense is operating in an increasingly constrained fiscal
environment. In this climate of conservation and reduction, the Office of Management
and Budget shows that the inflation-corrected defense budget has been reduced by
approximately 17 percent since 2010 (The White House, 2014). Sequestration measures
have forced the DoD to cut over $41 Billion in the last six months of 2013 (OSD
Comptroller, 2013). Research, Development, Test and Evaluation outlays have fallen
more than 18 percent over the last four years, proving that the acquisition budget is not
shielded from these cuts (The White House, 2014). Despite these reductions, the nation
still relies upon the military to produce effective weapons systems at a fair cost.

Accurately estimating the final cost of these weapon systems is difficult, largely
due to the uncertainty involved. This uncertainty is an inherent part of defense
acquisition due to the novelty and complexity of producing unprecedented military
capabilities. Requirements instability and political considerations add to this uncertainty.
It is not surprising, then, that inaccurate estimates are a constant companion to such
acquisition efforts. A Government Accountability Office (GAO) study from 2012
showed that the DoD acquisition portfolio exceeded its baseline cost estimates by over
$74 Billion in that year alone, an amount that would have paid for the recent
sequestration cuts nearly twice over (GAO, 2012a). Such large overruns do not cultivate

trust in the defense acquisition system, with Congress or the public.



Government agencies and independent organizations have conducted myriad
studies to determine the major sources of cost overruns in acquisition programs and many
of the suggestions resulting from these studies have been implemented (Kadish, 2005).
However, these initiatives are largely aimed at reducing the aforementioned uncertainty
by improving the Defense Acquisition System (DAS). The most recent of major
acquisition reforms is the Weapons Systems Acquisition Reform Act of 2009, and this
legislation is largely aimed at taming uncertainty in DoD acquisition. It mandates several
industry best practices such as systems engineering activities and technology maturity
assessments in all stages of development. The Defense Acquisition Guidebook declares
that these activities are critical for managing uncertainty, and emphasizes the importance
of “sufficient knowledge to reduce the risk associated with program initiation, system
demonstration, and full-rate production” (DAU, 2013:906).

Managing uncertainty to reduce unforeseen program costs is one way to prevent
cost growth; however, this is not the only solution. Another solution is to focus on
informing better resource allocation decisions from the outset. In one report, the GAO
stated that the “DoD’s inability to allocate funding effectively to programs is largely
driven by the acceptance of unrealistic cost estimates and a failure to balance needs based
on available resources” (GAO, 2008:3). A method to improve this resource allocation is
to embrace the uncertainty that typifies DoD acquisition in order to provide a more
accurate initial assessment of final program cost. This research employs a technique,
known as macro-stochastic estimation, that uses statistical methods to predict program
cost estimation performance, in the earliest phases of their development, by associating

them with past programs. This methodology encompasses known major cost drivers such



as changes to the Acquisition Program Baseline (APB) that are categorically excluded
from even the most rigorous estimates (Ryan et al., 2013).

Cost growth is a term frequently used to define the deviation of program cost
from some baseline estimate. While this term typically connotes positive deviations (i.e.,
baseline estimate is lower than actual cost), negative deviations (that is, overestimates)
are also included in the definition. Both types of deviations result in inefficient allocation
of vital resources, and distort assessments of program affordability. Fundamentally, cost
growth is based on just two elements: the initial cost estimate, and the deviation from this
estimate over time. While these elements are functionally related, neither the accuracy of
the initial estimate nor the total cost deviation can be known until the program is
complete. The consequence of this fact is that the value of an accurate cost estimate
steadily diminishes as the program matures, until the program is complete and the
estimate no longer has any value.

This phenomenon of decreasing utility calls into question a popular method of
coping with cost growth, which is to continually revise the estimate and generate new
program baselines once overruns and other programmatic changes become apparent. The
new estimates succeed in generating a more accurate picture of program cost, but since
many of the programming and technical decisions will have already been made, these

revised baselines possess decreasing utility.

Problem Statement
Current cost estimates generated by independent estimation techniques are limited

by their restriction to the APB. Program changes to key parameters (such as duration and



procurement quantity) usually result in a revision to the baseline and the cost estimates,
but historical trends in these program characteristics are not taken into account when
estimating the program’s cost. These limitations result in high acquisition cost growth

relative to the original estimate that reduces the efficiency of DoD resource allocation.

Research Objective

The objective of this research is to assist resource allocation and affordability
assessments of top-level decision makers early in the life of major defense acquisition
programs by providing a more accurate prediction of final acquisition costs. This
objective is accomplished by identifying general programmatic factors and trends that are
correlated with acquisition cost growth in a selected subset of DoD acquisition programs,
and quantifying the influence of these factors. Factors that are initially available, such as
branch of service, type of program, and amount of funding may then be incorporated into

a model to predict cost growth in future programs.

Investigative Questions
This research objective can only be accomplished once several key investigative
questions are answered.

1. What program characteristics are the most significant predictors of
acquisition cost growth? With relatively few data points, this analytic effort
seeks to achieve the best possible predictive capability using the fewest number of
significant predictors. The predictors that are the most highly correlated with
acquisition cost growth patterns in programs, or in groups of programs, are
incorporated into mathematical models of cost growth.

2. How can the selected factors be used to modulate the acquisition cost
estimate, and thus reduce the error? Two models are constructed. The factors
in the first model describe the cost growth of existing programs using all
information readily available during their acquisition phase. The second model



uses only the factors that are known at program initiation to predict the eventual,
final acquisition cost of future programs. This accuracy is demonstrated through a
validation of the predictive model.

3. What level of confidence is achieved by predicting acquisition cost growth

using significant factors that are available at program initiation? Confidence
interval estimation is used to assess prediction accuracy and usefulness.

Research Focus

The intent of this research is to include as many DoD programs as possible in
order to maintain relevance for the widest possible spectrum of acquisition portfolio
managers. However, limitations on data collection and homogeneity, discussed in greater
detail below, have confined this research to Major Defense Acquisition Programs
(MDAPs) with a program initiation date of 1987 or later. Additionally, programs must
have procured at least 25 percent of planned quantities, and be over 50 percent expended.
These filtering criteria yield 70 programs with 937 program-years of acquisition cost
data.

It is important to note the fundamental purpose of this study. Current cost
estimation techniques require the use of a formal program baseline; estimators are
prohibited from taking into account changes to this baseline. Therefore, the cost
estimation techniques presented in this research are not intended to directly assist the
acquisition program manager, or prescribe corrective action of any kind. Rather, this
study is intended to provide high-level acquisition executives (such as the Milestone
Decision Authority, acquisition portfolio managers, and independent cost estimating
entities) with a reasonable expectation of how an entire portfolio of related acquisition

programs will perform, on average, in terms of eventual cost growth.



Methodology

The initial phase of this study involves acquiring data on defense acquisition
programs through the use of Selected Acquisition Reports (SARs). Once an initial
examination is conducted to identify SARs that meet the selection criteria, these data are
added to an existing database on MDAP cost. Once all cost data are converted to a
common Base Year within each program, the resulting database is verified for accuracy
and consistency before proceeding with analysis.

Next, statistical methods are employed to determine trends in estimate errors.
Since acquisition data are available for the same program across multiple years, this
analysis constitutes a longitudinal study that requires modeling techniques capable of
handling this type of data. Major predictors of variance are identified and used to build a
model of cost growth using high-level programmatic attributes. Predictions are analyzed
for robustness using confidence intervals to verify real-world utility. Finally, the model
is validated using a modified cross validation technique, and the resulting predictions are
used to correct the cost estimate error of each program. The reduction in estimate error is

reported as the model’s primary performance metric.

Assumptions and Limitations

Due to limitations in the reporting of the SARs, and logistical considerations for
this study, only MDAPs with a program initiation date later than 1987 that have
completed an acceptable percentage of their acquisition are included. Only SARs are
used for cost estimate data in this study, and only unclassified data are used, since

consistency of reporting and ease of data aggregation are crucial to completion in the



requisite research time. Reporting standards are such that programs are not required to
generate a SAR once they reach 90 percent expended or 90 percent delivered; therefore,
the final estimate for a program is assumed to be the actual value for all parameters.
Finally, it is assumed that the sources of acquisition cost estimate error have remained
fundamentally unchanged since 1987, and that the trends and cost drivers in these

programs will continue to pervade future acquisition efforts.

Implications

While there have been many studies of acquisition cost growth in DoD programs,
these have been largely diagnostic in nature—they seek to analyze and correct the source
of cost overruns. However, an accurate model of cost based upon program attributes may
be prognostic. That is, the prediction of error and uncertainty in future acquisition
programs may be used to produce more realistic estimates of program cost, and may
greatly aid the DoD in assessing the affordability of its most expensive acquisition

efforts.



I1. Problem Background and Relevant Literature

Chapter Overview

This chapter provides relevant background information on DoD cost estimating
practices and affordability analyses in order to establish the utility of this research. This
chapter then describes the contents of Selected Acquisition Reports (SARS). Results of
previous SAR analysis efforts are used to inform this research, while differences are
highlighted to distinguish this effort from previous SAR and acquisition cost studies.
Next, this chapter presents an overview of the foundational work on macro-stochastic
cost estimation techniques. Finally, commonly cited pitfalls in SAR analysis are

summarized and discussed.

Major Acquisition Program Cost Estimating Process

Section 3.4 of the Defense Acquisition Guidebook (DAG) summarizes the cost
estimation and reporting process for MDAPs. The program manager for the acquisition
program is responsible for preparing the Component Cost Position for each major
milestone review. This cost position—an estimate of the program’s life cycle cost—is
submitted to the DoD-level cost oversight organization, the Cost Assessment and
Program Evaluation (CAPE). The CAPE conducts an Independent Cost Estimate (ICE)
and submits this estimate, along with their assessment of the Component Cost Position, to
the Milestone Decision Authority (MDA). The MDA is responsible for assessing the
quality of a program’s cost estimates before certifying that program as an official
acquisition Program of Record. This certification occurs at Milestone B, though a new

cost estimate is accomplished at each major milestone. The MDA mediates any



discrepancies between the program office and CAPE estimates, and approves a unified
cost estimate for the program, called the Service Cost Position. This estimate forms the
basis of the data provided to Congress in the SAR (DAU, 2013).

The program office estimate and ICE generation processes are rigorous, “require a
large team, and may take many months to accomplish” (GAO, 2009:34). The GAO Cost
Estimating Guide explains that the “key to developing a credible estimate is having an
adequate understanding of the acquisition program” (GAO, 2009:57) as defined in the
APB, and that this APB is generated using the “best available information at any point in
time” (GAO, 2009:58). The guide emphasizes that accounting for cost risk and estimate
uncertainty are crucial components of a quality cost estimate, though these components
are not included in the final budget for the program.

The MDA, in addition to certifying that a program is ready for the next phase of
development, must also certify that the funding requirements for this program fit within
the expected future resources in the DoD’s budget (GAO, 2009). This constraint is called

affordability. The DAG clarifies the intent of the affordability assessment:

Affordability analysis and constraints are not intended to produce rigid,
long-term plans. Rather, they are tools to promote responsible and
sustainable investment decisions by examining the likely long-range
implications of today’s requirements choices and investment decisions
based on reasonable projections of future force structure equipment
needs... (DAU, 2013:3.2.1).

This definition illustrates the utility of a tool, with which the MDA might determine these
so-called “reasonable projections” (DAU, 2013:3.2.1) of future resource requirements—

and therefore costs—of a program. Such a tool would need to be unconstrained by the

9



APB since the baseline is subject to change in accordance with “long-range implications
of today’s requirement choices” and “future force structure equipment needs” (DAU,

2013:3.2.1).

Contents of a SAR

Since 1969, Congress has required that MDAPS report program status on a yearly
basis using the SAR (GAO, 2012b:1). These reports contain standardized data in a format
specified by Title 10 of U.S. Code, section 2432. SARs may be available for a program
in some cases before Milestone B, and are required until a program has expended 90
percent of its funding, or has procured 90 percent of its planned units. Unclassified SARs
generated later than 1997 are available electronically in the Defense Acquisition
Management Information Retrieval (DAMIR) system (Defense Acquisition Management
Information Retrieval System, 2014). SARs generated prior to 1997, as well as classified
SARs, have been made available to the Air Force Institute of Technology®. The

requirement to deliver an annual SAR was only levied on MDAPs, defined as:

Those estimated by the Under Secretary of Defense for Acquisition,
Technology and Logistics to require an eventual total expenditure,
including all planned increments, of more than... approximately $509
million for research, development, test, and evaluation, based on fiscal
year 2010 dollars), approximately $3.054 billion for procurement, based
on fiscal year 2010 dollars, or are designated as a major defense
acquisition program by the Milestone Decision Authority (GAO,
2012b:2).

L In circumstances where program cost data is unclassified, these data may be admitted into the dataset. No
classified information is present, either in this document, or in the dataset used for analysis.

10



These SARs are usually delivered in December of each year, though a significant
threshold breach requires an interim SAR. Also, since the SAR is produced in
conjunction with the President’s budget, the presidential election years of 2000 and 2008
resulted in no SARs, other than those required due to a breach.

The SAR includes key programmatic information, such as staff contact
information, mission descriptions, key performance parameters, procurement quantity,
and schedule information. However, the bulk of the document is concerned with the cost
of the program. Several key cost metrics are reported:

e Total Acquisition Cost, broken down by appropriation

e Funding profile, by appropriation

e Unit Cost, reported as Average Procurement Unit Cost, and Program
Acquisition Unit Cost

e Variance from the previous SAR and from the current baseline

e Operating and Support Costs
The utility of the SARs, and the reason for their frequent use in acquisition analyses, is
that they report program characteristics in a consistent manner across programs, and
largely across years. There are a few notable exceptions to this consistency. SARs
produced prior to 1992 typically have costs reported only in the purchasing power of the
current year, whereas later SARSs correct this amount to a common year. Additionally,
some programs have a unique structure that requires a deviation from the standard SAR
reporting format. These deviations are discussed in greater detail in the Challenges

section, later in this chapter.
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The DAG states that cost estimators “are required by Congress to report certain
elements of program cost risk for MDAP and MAIS programs” (DAU, 2013:115). It
further stipulates that these risk elements result in the generation of a confidence level in
the cost estimate, and that this confidence level must be reported in the SAR. However,
the formal legislation governing SAR reporting includes no such stipulations, and

confidence levels are not reported in the SAR.

Database Formation

SARs contain hundreds of metrics pertaining to acquisition program performance;
however, these data are not in an easily-compiled format. As a result, SAR analysis
requires extracting relevant data from these acquisition reports and placing them in an
easily interpretable format. RAND research since 1993 has been conducted using their
constantly growing SAR database, dubbed the Defense System Cost Performance
Database (DSCPD). This database includes SARs from reporting programs—MDAPS,
Major Automated Information Systems (MAISs), and some programs specially identified
by Congress as special interest programs. A report on the DSCPD explains, “This
database includes cost growth data derived from information in Selected Acquisition
Reports (SARs), as well as a range of potential explanatory variables that include cost,
schedule, and categorical information” (Jarvaise et al., 1996:iii). For example, the
DSCPD places programs into one of the following categories: Aircraft, Helicopter,
Missile, Electronic, Munitions, Vehicle, Ship, Space, and Other. Other summary-level
variables include service component, contractor, prototype, precedent, and modification

variables.
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Since the DSCPD is designed to be the canonical database for analyses within the
RAND Corporation, it includes all data points possible and continues to grow year to
year. However, individual studies using these data often place completion criteria on
programs allowed into the study. Ina 1993 RAND study, the authors state,
“Additionally, we have used only programs that have progressed three or more years past
[Engineering and Manufacturing Development] start, a cutoff point that reasonably
corresponds with the availability of good quality information” (Drezner et al., 1993:xii).
That study also included only completed programs (90 percent expended or procured).
These filtering criteria admitted only 150 of the 244 programs into the study; however, it
helped ensure that the inferences and conclusions were supported by quality data. Since
the current research effort involves collecting new data, such filtering criteria will be
crucial to scoping the effort and ensuring quality results.

Cost data for MDAPs are also available in the form of the constituent contracts,
catalogued in the Defense Cost and Resource Center (DCARC). These cost estimates are
generated by contractors, not by the program office, and in some cases, they may differ
from the program office estimates by substantial amounts. This discrepancy is typically
worse on programs with erratic SAR estimates and large estimate errors. While the
contractors’ final cost for a program should match the figure from the program office
(since it is no longer an estimate), the Contractor Cost Performance Report (CPR)
database does not contain the final values of all the independent variables available from
the SAR. For example, the Cost Variance Due to Economic Factors is a metric that is
reported in each SAR, but is not reported in the CPR. The true final cost of the program

would still be valuable for predicting the final cost as a function of early program

13



indicators, but a 2005 study shows that the final program cost is well approximated by
estimates at 92.5 percent completion (Tracy, 2005). Since SARS report program status to
90 percent complete (and often beyond 90 percent, due to the annual report cycle), this
final estimated cost is expected to adequately approximate the true final cost of the
program. Estimate volatility late in program life is examined in Chapter 5 to support this
assumption. Future studies may revise the model presented here by ensuring the final

cost estimates are, indeed, accurate.

Macro-Stochastic Estimation

This study is a direct follow-on to work performed at the Air Force Institute of
Technology by Dr. Erin Ryan (Ryan et al., 2013). His research focuses on valuing
flexibility in DoD acquisition programs using expected Life Cycle Cost (LCC) as a
means of discriminating between design options with varying flexibility. Ryan’s
investigation of LCC estimate accuracy concludes that current acquisition reporting
practices provide a poor estimate of LCC, largely due to the constraint to the static

baseline:

If, in fact, historical LCC estimates are highly inaccurate, then there may
be a fundamental flaw in the traditional estimating methodology. This led
to the hypothesis that long-term DoD cost estimates tend to be so poor
because they are constrained by a static APB [emphasis in original] (Ryan,
2012:144).

Ryan proposes a methodology for decoupling estimates from the APB by predicting
program errors using top-level variables that characterize the program. This

methodology, which he dubbed “macro-stochastic” cost estimating, essentially “models

14



the error in the program estimate as a random variable whose value is determined by a
salient group of top-level program summary indicators” (Ryan, 2012:148). The
dependent variable in Ryan’s study is cost estimate error, which he derives from program
estimates for the LCC.

Ryan did not use the RAND database to complete his study of LCC, as he
determined that certain key aspects of the data were missing, insufficient, or difficult to
use with available statistical tools. Rather, he created a new database to support his
research. Since Ryan’s research focuses mainly on LCC, his dataset requires that
MDAPs have sufficient O&S cost estimate data. However, SARs were not required to
include these data until 1985 (U.S. House of Representatives, 1984), and most did not
comply until about 1990 (Hough, 1992). As a result, the only SARs with consistently
reported O&S cost estimates are from 1990 and later. This span provides only 20 years
for a program to complete its life cycle, thus allowing accurate estimation of the actual
LCC in order to calculate cost growth. Ryan’s dataset consists of 470 SARS describing
36 MDAPs, spanning 1987 to 2010. His dataset combines some categories listed as
binary variables in the RAND dataset into new categories. For example, modification is
one possible value in the Iteration variable; other possibilities include new and variant.
However, the smaller dataset precludes the ability to use such numerous system type
categories, and programs are assigned to one of four: Aviation, Munition, Maritime, and
Other. Ryan’s dataset is modified and expanded using the filtering criteria described
above to fit the research objectives of the current effort.

By necessity, any dataset constructed to analyze SARs will include repeated data

points from the same program collected across many years. This continuity violates a
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key statistical assumption for typical regression models, since the observations cannot be
assumed to be independently distributed. Therefore, Ryan uses a mixed-modeling
technique to analyze the data (Ryan et al., 2013). This technique requires the use of
sophisticated modeling software, and obviates the use of many of the convenient routines
that select regression model parameters automatically. Ryan validates his prognostic
model using a modified Leave One Out Cross Validation (LOOCV), discussed in greater
detail in Chapter 3.

Many of Ryan’s techniques are adopted for this research effort, although the
difference in the type of cost estimate (that is, acquisition cost versus LCC) allows
significantly more observations in the dataset for this study. Furthermore, Ryan’s
research does not include confidence intervals on the model-corrected values, and does
not perform model adequacy checking for statistical assumptions. These activities are
incorporated into the current research effort.

No studies other than Ryan’s have applied a macro-stochastic approach (or
anything appreciably similar) to improving DoD cost estimates. However, other
researchers have proposed methods for improving early program cost estimates by
incorporating high-level program cost drivers. Carnegie Mellon’s Software Engineering
Measurement and Analysis (SEMA) Cost Estimation Research group published a study
in 2011 in which they proposed a method called QUELCE, which stands for Quantifying
Uncertainty in Early Lifecycle Cost Estimation (Ferguson et al., 2011). This method
requires convening a panel of experts, and using their feedback to determine underlying
cause-and-effect relationships that drive cost variability throughout program life. This

feedback is used to construct a Bayesian Belief Network, and Monte-Carlo simulation is
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used to simulate possible trajectories in program estimates. In contrast, Ryan’s macro-
stochastic technique does not require input from experts, and allows a much more

expeditious and data-driven assessment of likely baseline deviations.

Other Notable SAR Analysis Methodologies

While macro-stochastic cost estimation may be a novel technique, SAR analysis
is not. The RAND corporation has conducted many studies analyzing SAR data to
“quantify the magnitude of weapon system program cost growth [and] identify factors
affecting cost growth” (Drezner et al., 1993:xi). This 1993 study states that “SAR data
are the basis of cost growth studies both in and out of DoD” (Drezner et al., 1993:8).
Many SAR-based studies use similar methodologies in estimating cost growth. The
aforementioned 1993 Drezner study, along with more recent studies in 2006 and 2007,
are among the most rigorous and complete SAR analyses. Their similarities to the
current research effort necessitate an examination of the methodologies they used to
estimate cost growth.

Drezner, et al., state that, “Cost growth can be defined simplistically as the
difference between estimated and actual costs. The direction of error measured from the
estimate baseline can be either to initially understate costs, in which case cost growth
occurs, or to overstate costs, in which case a cost reduction is realized” (Drezner et al.,
1993:1). This difference between estimated and actual costs is frequently reported as a
Cost Growth Factor (CGF) where values greater than one indicate actual cost greater
than what was estimated (that is, an overrun), and values between zero and one indicating

actual cost less than what was estimated (that is, an underrun). Analysts typically correct
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the CGF to account for different phenomena, the most prevalent being inflation and
procurement quantity changes.

Inflation correction is a well-established technique that is often performed during
SAR generation. SARS report costs in Then Year amounts as well as corrected to a
common baseline year, called Base Year costs. The Base Year estimate uses published
inflation indices to correct the dollar amount in the estimate to the purchasing power of
some other year (typically, the year of the APB). This correction allows direct
comparison of cost estimates made in different years. However, difficulty arises when
the analyst wishes to directly compare costs in two different base years, either across
programs, or even within a single program. In order to preserve continuity and correctly
calculate the cost estimate error, each estimate for a given program is corrected to a
common Base Year, though this Base Year varies across programs.

Quantity normalization is also applied in the most rigorous SAR analyses and
may be accomplished by one of several different techniques. The RAND study from
2006 uses Cumulative Average Cost Improvement Curves (CIC) (Arena et al., 2006) to
normalize the initial estimate to the final quantity, while other studies simply track the
cost variance due to quantity changes, as reported in the annual SAR. The premise for
this specific normalization (other parameters, such as engineering changes, are not
normalized) is that quantity changes are outside the control of the program manager.
This distinction is indicative of the underlying purpose of many SAR analyses: to search

for causes of cost growth in order to inform corrective actions. Drezner explains that:
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Nominal [unadjusted] cost growth is an appropriate measure if the only

concern is the impact of cost growth on the federal budget. Adjusted

[corrected for inflation and quantity] cost growth, however, is a more

relevant measure when trying to determine how well program

management has done in estimating and controlling costs within its

command (Drezner et al., 1993:10).

Quantity changes are frequently identified as one of the most significant
contributors to cost growth. The 1993 RAND report states that “Inflation and quantity
are shown to have the largest effect on cost growth: the average cost growth for 125
programs after normalization is 42 percentage points lower than the unadjusted result”
(Drezner et al., 1993:21). Therefore, normalizing for quantity change obfuscates one of
the most powerful predictors of actual cost growth. While this effect may be out of the
program manager’s control, it is certainly relevant to anyone directly concerned with the
federal budget.

None of these research efforts, other than Ryan’s, use a mixed-modeling
approach, although one 2007 study uses a dynamic panel approach “which includes cross
section fixed effects...since there are clearly service specific characteristics” (Smirnoff
and Hicks, 2007:9). The 2007 Smirnoff study is unique in two respects. First it uses a
statistical technique that attempts to resolve subject-specific effects—in this case,
service-specific—rather than simply estimating the average, and it reports the confidence
in the findings. Second, it attributes cost growth to macroeconomic factors, such as war,
defense budgetary trends, and acquisition reforms. These factors are not typically
considered in acquisition analyses, though authors sometimes refer to specific

phenomena, such as the Reagan build-up (Drezner et al., 1993:8). It is notable that the

dynamic panel technique employed in the Smirnoff study requires a specified covariance
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structure, and the first-order autoregressive structure is selected to model the dependence
within the data. This is the same structure selected by Ryan, and is one of the candidate

structures for the current research effort.

Challenges in SAR Analysis

Several pitfalls and inherent difficulties exist when using SAR data to analyze
acquisition cost. All of the authors discussed above point out limitations to using their
dataset. Paul Hough, one author of the 1993 RAND study, wrote a separate report, the
sole purpose of which is to identify such pitfalls and urge caution when interpreting SAR
analysis results. This section provides an overview of the challenges listed in that report,
and in other relevant SAR analysis reports. Similar challenges listed by different authors
are grouped into categories below. While some of these challenges are endemic, and
shared by the current research effort, the list of assumptions and limitations pertaining to
the current effort is discussed in Chapter 3. The impact of the applicable challenges and
assumptions are discussed in Chapter 5.

Pitfall 1: Omission of major cost elements. Exclusion or obfuscation of
significant cost elements can diminish the apparent size of a program (Hough, 1992).
Also, program managers will frequently establish a margin for error in the budget; this
practice will inflate the apparent size of the program, but can deflate apparent cost
growth. Jarvaise remarks on this fact when creating his SAR database: ‘“Unfortunately,
SARs do not reveal the amount allocated as a management reserve. Since the amount of
contingency funds cannot be separated from the total funding for each program, the

impact of these funds cannot be estimated” (Jarvaise et al., 1996:7). Therefore, it is
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important to note that the current research effort is measuring the error in the official cost
estimates provided to Congress, not necessarily the estimates endorsed internally by the
program.

Contractor-borne costs, such as the expenditures during preliminary research and
development efforts, and overruns in Firm-Fixed-Price (FFP) contracts, are not reported
in the SAR (Hough, 1992; Jarvaise et al., 1996). Hough explains that technical
deficiency is an unaccounted source of cost, since the price of bringing a deficient system
up to the promised capability is not estimated when such deficiencies occur. This is a
tenet of modern Earned Value Management (EVM), where the Budgeted Cost of Work
Performed (BCWP) must be compared to the Actual Cost of Work Performed (ACWP) to
determine loss of value in a program. The key distinction between O&S costs,
management reserve, and all other omissions, is that these first two are costs directly
incurred by the government. These EVM principles are irrelevant to this effort, which
focuses only on the actual dollars required to fund the programs.

Pitfall 2: Changes to reporting requirements and guidelines. Major revisions
to SAR reporting requirements cause discontinuity and disparities over time that make it
difficult to compare early estimates to actual expenditures. Hough reports that from
February of 1968, to June of 1989, DoD Instruction 7000.3 (the instruction pertinent to
SAR generation) underwent sixteen revisions, an average of one per year (Hough, 1992).
These changes ranged from mandating cost reporting in Base Year dollars, to major
restructuring of cost-variance categories. The restructuring of O&S cost categories
proves especially problematic since there is not any way to divide early program costs

(reported in nine categories) into the newer seven-category system (Hough, 1992). Even
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the threshold for being classified as an MDAP has changed at least five times, from $25
million RDT&E and $100 million Procurement in Then Year 1969 dollars, to the current
threshold of $509 million RDT&E and $3.1 billion in procurement (BY 2010 dollars)
(Drezner et al., 1993; GAO, 2012b). Such changes prove problematic to any SAR
analysis effort, as the definitions used to categorize the programs are inconsistent across
time. Even when reporting requirements are stable for any length of time, the GAO
reports that many of these requirements are not followed (GAO, 2012b).

Pitfall 3: Confusing program structure and changes to that structure. Hough
provides three concrete examples of programs that, through restructuring, took on
dramatically higher or lower costs than were initially estimated. However, he points out,
these changes were due to combining of one program under another, the cancellation and
subsequent re-start of a program, or other large dissimilarity with the initial baseline.
Such changes are relatively common for long running programs where initial acquisition
initiates a new block buy before the previous production is terminated.

When such rifts are encountered in program continuity, it is often impossible to
extricate the sources of cost. Such programs must often be omitted from the database
entirely. It is also difficult to account for cost growth in programs where costs are split
across multiple services. Hough provides an example of how the AMRAAM program
saw cost growth in the Air Force component, but a cost reduction in the Navy component
of the program (Hough, 1992). These changes must be tracked separately, but aggregated
to acquire the complete picture of the program cost growth. Maritime acquisition
provides a good example of a program that doesn’t follow the typical milestone process;

instead, the lead production contract serves a role similar to the EMD phase, and the
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follow-on production can be thought of as full rate production. These distinctions are not
always clear in the SAR; some maritime acquisition efforts even report each hull number
like a separate program (this is usually the case for aircraft carriers). For these reasons,
each SAR must be examined carefully for unusual program divisions or departures from

the typical acquisition profile.

Conclusion

Significant work has been performed in the areas of SAR analysis, while macro-
stochastic estimation techniques are still nascent. Best practices in all of these areas must
be applied to the most up-to-date and salient dataset in order to produce the highest
quality inferences and predictions. This chapter summarizes the process used in DoD
cost estimation and affordability assessment, illustrating the utility of a tool for predicting
changes in a program’s APB. This chapter also highlights commonly cited barriers to
accurate SAR analyses. Some of these barriers are applicable to this research effort, but
many are not, since this research does not seek to establish causation. The next chapter
will discuss the aspects of former studies that are incorporated into this research, and list

the relevant limitations and assumptions.
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111. Methodology

Chapter Overview

This chapter explains filtering criteria used when collecting acquisition cost
estimate data from Major Defense Acquisition Programs (MDAPS). It also discusses the
statistical model, the model selection criteria, and the model selection technique. Finally,

it presents the validation methodology for the predictive model.

Dataset Formation

Submission of acquisition reports to Congress began in 1969 for select programs;
therefore, the complete body of cost estimate information for these programs is vast.
Unfortunately, constant changes to reporting requirements create dissimilarities that pose
challenges to analysis. In order to restrict the dataset for this analysis, and ensure
applicable and homogeneous data, five filtering criteria are applied to the available SAR
data. It is difficult to determine the effect that these criteria will have on the performance
of the final models a priori. For this reason, criteria are chosen that have been
established by previous SAR analyses. In some cases, even more restrictive criteria are
used to reduce the scope of this study to a manageable level. Chapter 5 assesses the
impact of these criteria on the quality of the final model. These five filtering criteria are
discussed below.

First, only MDAPs are considered. These programs historically comprise
approximately 50 percent of the procurement budget (Jarvaise et al., 1996) and are
required to report their status annually via the SAR. While other programs, such as

Major Automated Information Systems (MAIS), report acquisition data to Congress,
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these programs are excluded from this study in order to make the scope more
manageable.

The second major filtering criterion is the program initiation date. This study
only includes programs with a Milestone B date of 1987 or later. Some SARs report
planning SARs prior to this milestone, but the program is not considered an official
Program of Record until Milestone B, and the program structure is not formally
established until this milestone. The 1987 threshold serves several purposes. The year
1987 is the first year after the Packard Commission fundamentally reformed the DoD
acquisition process. Therefore, this threshold prevents disparate reporting requirements
and acquisition practices for older programs from biasing the results. Many of the other
major revisions to SAR reporting requirements, occurred prior to 1987, allowing greater
continuity in the dataset (Arena et al., 2006). Additionally, the selection of a threshold is
necessary to scope the data reduction effort, and complete the study in the required time.

The third filtering criterion is the completion criterion. Since this study is
primarily concerned with measuring acquisition cost estimate error over time, the
completion criterion ensures that a program has reached a level of maturity sufficient to
allow meaningful estimation of this error. However, requiring programs to have
completed the entire acquisition phase is overly restrictive, due to the high average
duration of these multi-billion dollar programs. Therefore, programs that have expended
at least 50 percent of their projected funds, and have produced at least 25 percent of their
planned units are included in the study. This completion threshold is more restrictive
than those used in previous studies, as shown in Chapter 2. An exception is made to the

25 percent production requirement for Navy programs that procure maritime vessels.
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These maritime acquisition programs will sometimes divide reporting into completion of
individual vessels or lot-buys, showing no progress until all (or most) of the vessels are
complete!. Allowing incomplete programs into the dataset necessarily sacrifices data
quality for a sufficient sample size (both of which are required for a useful model). The
impact of this criterion is assessed in Chapter 5. No cancelled programs are admitted to
the dataset, though this criterion only omits one program.

Fourth, all programs must have at least four data points. Since MDAP status is
based upon acquisition cost estimates, cost overruns may cause a program that is not
initially designated as an MDAP to exceed the reporting requirement threshold with only
a few years left in the acquisition phase. Such programs skew the results, as they meet
the completion threshold, but do not have sufficient repeated measures to produce a
meaningful estimation error. Therefore, only programs with four or more SARs are
included in the study. This number is more restrictive than Drezner’s threshold of three
SARs (Drezner et al., 1993), ensuring that sufficient repeated measures are achieved to
establish trends for each program.

Finally, this research allows changes to a program’s baseline, but cannot utilize
data for programs that are fundamentally restructured before completion?. Any large

inconsistencies in ground rules and assumptions for generating estimates make it difficult

1 CVN-68, AOE-6, MHC-51, and SSN-21 programs all go from 0% to over 80% acquired in a single SAR.

2 For example, the Patriot Advanced Capability (PAC-3) program made four total changes to the structure
of the program. Sometimes the baseline specified components of the system and only reported costs for
select ones, while other times, the system was reported as a whole.

26



to accurately determine the cost estimate for a system. This criterion must be assessed on

a case-by-case basis.

Dataset Contents

This section presents summary statistics for the final dataset. Out of over 319
MDAPs with initiation dates later than 1987, 70 programs (21 percent) qualify for entry
into the dataset. There are an average of 13.4 SARs for each of these programs, resulting
in a total of 937 program-years of data. The most recent SARSs used are from 2012 (the
most recent data available at the time of this study). Table 1 summarizes the data using
different nominal parameters. Overall, the data provide sufficient observations in each
category, which helps prevent divergent extrapolation—a condition where parameter
combinations cause invalid inferences to be drawn where no collected data exists.

The Service Component variable in Table 1 indicates the DoD service component
responsible for the program; in the case of a joint program, it indicates the lead service.
The Program Type variable is based on the SAR Mission and Description section, as well
as the appropriation category. These seven types are consistent with those used in the
RAND analyses cited in Chapter 2.

The iteration variable indicates whether a program is a completely new system, a
modification to an existing system, or a variant of an existing system. For example, the
C-5 Avionics Modernization Program is a modification, but the F-18E/F program is a
variant (it is a new version of an existing airframe). All systems with new letter

designations (F-16C/D, F-14D) are considered variants.
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Table 1. Nominal Parameter Frequencies

Number of Percentage of

Parameter
Programs Total
Service Component
AF 23 33%
Army 16 23%
Navy 31 44%
Program Type
Aviation 23 33%
Electronic 10 14%
Ground Vehicle 6 9%
Maritime 14 20%
Munition 9 13%
Space 5 7%
Space Launch 3 4%
Iteration
Modification 13 19%
New 49 70%
Variant 8 11%
Final Report Type
Below Threshold 22 31%
90% Expended 48 69%
Nunn-McCurdy Breach
No 41 59%
Yes 29 41%
Joint
No 60 86%
Yes 10 14%

The Final Report Type variable is useful for tracking the number of programs that
are complete, versus those that are incomplete. The Nunn-McCurdy Breach parameter in
Table 1 indicates whether a program has ever had such a breach. This breach, established

in the 1982 Defense Authorization Act, is a formal measure of cost growth that requires
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an increased level of scrutiny from Congress. The Nunn-McCurdy breach is indicated as
a binary variable in each SAR, located in the Threshold Breaches section.

Programs that are jointly funded with another service are indicated in the SAR
and none of the programs in this database switch their status during their acquisition
phase, though this is a possibility with other MDAPs. Joint programs are identified in the
SAR’s Program Information section.

Table 2 lists the programs in the dataset, and provides summary-level descriptions
of each. In addition to the levels of the parameters, described above, Table 2 also shows

the span of program years, and the full title of the program.

Data Verification

Prior to analysis, it is important to examine the data for any data entry or
typographical errors. It is also useful to convert values to common units, so that
transformations may be applied in a uniform manner. For example, variables with dollar
amounts erroneously reported in units of thousands—a relatively common error—are
corrected to be in millions. Dollar amounts correctly reported in thousands are also
converted to millions in order to establish analytical continuity. This data verification
and conversion process is performed as data is entered into the database. The distribution
of each variable is also examined to identify outliers. However, these outlying
observations are typically retained since the removal of data points that exhibit
meaningful errors would adversely affect resource allocation. Outliers are only removed
from this study if they can be attributed to typographical or data entry errors, and such

errors cannot be corrected.
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Table 2. Program Data Summary

Program Designation Date Range Full Program Title Service Component Joint  lteration System Type
Abrams Upgrade 1992-2003 M1A2 Full Tracked Combat Tank Army N | Modification | Ground Vehicle
AEHF 2001-2012 Advanced Extremely High Frequency Satellite AF N New Space
AESA 2001-2006 Active Electronically Scanned Array Radar AN/APG-79 Navy N New Electronic
AMRAAM 1988-2012 AIM-120 Advanced Medium Range Air-to-Air Missile AF Y New Munition
AOE 6 1988-1997 AOQE 6 Class Fast Combat Support Ship Navy N New Maritime
AV-8B REMAN 1994-2002 AV-8B/Attack, V/STOL, Close Air Support Navy N | Modification Aviation
AWACS RSIP 1989-2003 AWACS Block Radar Upgrade AF N | Modification Aviation
B-2 RMP 2004-2011 B-2 Spirit Radar Modernization Program AF N | Modification Aviation
C/MH-53E 1987-1994 CH-53E Transport Heli/MH-53E Mine CM Heli Navy N Variant Aviation
C-17A 1987-2010 C-17 Globemaster Ill AF N New Aviation
C-5 AMP 2006-2010 C-5 Avionics Modernization Program AF N | Modification Aviation
CEC 1995-2012 Cooperative Engagement Capability (CEC) Navy Y New Electronic
CGS (JSTARS GSM) 1991-2001 Joint STARS Common Ground Station Army N New Electronic
C/MH-53E 1987-1994 CM/H-53E Transport Helicopter Navy N Variant Aviation
Cobra Judy Rep. 2003-2011 Cobra Judy Ballistic Missile Observation Suite Navy N | Modification Maritime
CVN 68 1987-2002 CVN-68 Class/Carrier Replacement Program Navy N Variant Maritime
DDG 1000 1998-2012 DDG 1000 Zumwalt Class Destroyer MNavy N MNew Maritime
DDG 51 1987-2012 DDG 51 Destroyer MNavy N MNew Maritime
E-2C 1994-2006 E-2C Reproduction Navy N | Modification Aviation
EA-18G 2003-2012 EA-18G Growler MNavy N Variant Aviation
Excalibur 2002-2012 Excalibur Precision 155mm Projectiles Army N New Munition
F/A-18C 1987-1994 F/A-18 C/D Naval Strike Fighter (Hornet) Navy N Variant Aviation
F/A-18E/F 1992-2012 F/A-18E/F SUPER HORNET Navy N Variant Aviation
F-14D 1987-1993 F-14D TOMCAT MNavy N Variant Aviation
F-16C/D 1987-1994 F-16 Multimission Fighter (Fighting Falcon) AF N Variant Aviation
F-22 1991-2010 F/A-22 Raptor AF N New Aviation
FBCB2 1999-2010 Force XXl Battle Command Brigade and Below Army N New Electronic
FMTV 1989-2012 Family of Medium Tactical Vehicles Army N New Ground Vehicle
GBS 1997-2012 Global Broadcast Service AF Y New Electronic
GLOBAL HAWK 2001-2012 RQ-4A Global Hawk AF N MNew Aviation
HIMARS 2003-2012 High Mobility Artillery Rocket System Army N New Ground Vehicle
JASSM 1999-2012 Joint Air-to-Surface Standoff Missile (AGM-158) AF N New Munition
Javelin 1997-2007 Advanced Medium Anti-Tank Weapon System Army Y | Modification Munition
IDAM 1995-2012 Joint Direct Attack Munition AF Y New Munition
JPATS 1995-2012 Joint Primary Aircraft Training System (JPATS) AF Y New Aviation
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Table 2. Program Data Summary (Continued)

Program Designation Date Range Full Program Title Service Component Joint  Iteration System Type
Isow 1992-2012 Joint Standoff Weapon (1SOW) Nawvy Y New Munition
ISTARS 1989-2003 Joint STARS (E-8C) AF N New Aviation
KC-135R 1987-1994 KC-135R Modernization Program AF N | Modification Aviation
LAIRCM 2007-2011 Large Aircraft Infrared Countermeasures AF N New Electronic
LHD 1 1987-2005 LHD 1 Amphibious Assault Ship Navy N New Maritime
Longbow Apache (Airframe) 1993-2010 AH-64 Apache Longbow Helicopter (Airframe Only) Army N New Aviation
Longbow Apache (Mission Kit) | 1993-2003 AH-64 Apache Longbow Helicopter (Mission Kit Ony) Army N New Aviation
Longbow Hellfire 1990-2004 AGM-114L Hellfire Missile Army N New Munition
LPD 17 1996-2012 LPD 17 AMPHIBIOUS TRANSPORT DOCK Nawy N New Maritime
LUH 2006-2012 Light Utility Helicopter Army N New Aviation
MCM 1988-1993 Mine Countermeasures Ship Navy N New Maritime
MCS 1991-1997 Maneuver Control System Army N New Electronic
MH-605 1998-2012 MH-60S FLEET COMBAT SUPPORT HELICOPTER Navy N Variant Aviation
MHC 51 1991-1998 MHC 51 {OSPREY) Coastal Minehunter MNawy N New Maritime
MIDS 1997-2012 Multifunctional Information Distribution System MNawvy Y New Electronic
Minuteman Il GRP 1997-2008 Minuteman Il Guidance Replacement Program AF N | Modification | Space Launch
Minuteman Il PRP 1997-2009 Minuteman Ill Propulsion Replacement Program AF N | Modification| Space Launch
NAS 1997-2012 MNational Airspace System (NAS) AF Y New Electronic
NAVSTAR GPS 2002-2012 NAVSTAR Global positioning System Satellite AF N New Space
NESP 1992-2004 Navy EHF SATCOM Program, AN/USC-38 Navy N New Electronic
PLS 1988-1996 Palletized Load System Army N New Ground Vehicle
SBIRS High 1996-2012 Space-Based Infrared System Constellation AF N New Space
SM 2 1997-2003 Standard Missile 2 (Blocks I-1V) MNavy N New Munition
SSGN 2002-2007 Ohio Class SSGN Conversion (726 CL) Navy N | Modification Maritime
SSN 21 1987-1999 High Speed Nuclear Attack Submarine Nawvy N New Maritime
Stinger RMP 1989-1994 Stinger Reprogrammable Microcontroller Army N New Munition
STRAT SEALIFT 1993-2001 Strategic Sealift Navy N New Maritime
Stryker 2001-2011 Stryker Family of Vehicles Army N New Ground Vehicle
T-45TS 1987-2007 Naval Undergrad Jet Flight Training System Navy N New Aviation
T-AKE 2001-2010 Dry Cargo/Ammunition Ship MNavy N New Maritime
T-AO 187 1987-1994 T-AO 187 CLASS FLEET OILER Nawy N New Maritime
Titan IV 1989-2001 Titan IV Space Booster AF N New Space Launch
Trident Il 1986-2012 UGM 133A Sea Launched Ballistic Missile Nawvy N New Munition
V-22 1987-2012 \-22 Advanced Vertical Lift Aircraft (OSPREY) MNawvy Y New Aviation
WGS 2001-2012 Wideband Global Satcom AF N New Space
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The database contains two types of variables—or factors—extracted from data in
each SAR: reported factors, and calculated factors. Reported factors are read directly
from the SAR text, and entered into the database as presented. Examples of a reported
factor are Service Component and Iteration. The database contains thirty-nine reported
factors. Using combinations of the reported factors, mathematical operations are
performed to generate forty-nine other variables, called calculated factors. An example
of a calculated factor is Years since Milestone B, which uses the MS-B and SAR Date
reported factors to calculate the new variable. All reported factors analyzed in this study
are summarized in Table 3, and all calculated factors are shown in Table 4. Many of
these calculations are discussed in greater detail in the following sections.

The factor level in Table 3 indicates whether the value of a factor remains the
same for the duration of the program (designated as Program), or may vary across SARS
within a program (designated as SAR). Factors that vary across SARs form the basis for
the trajectory that a program’s cost estimates take through the life of the program. Some
parameters, such as Last Year of Production have the SAR and Program level values
recorded, since a given program will report the last year of production in each SAR, but a
program has only one true last year of production. This true value is assumed to be the
one reported in the final SAR for that program. The SAR/Program description in Table 3

indicates that both of these levels are retained.
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Table 3. Reported Factors

Factor Name Description Level Variable Type
Program Name The formal name of the acquisition program Program Nominal
Year The year of the SAR SAR Discrete
SAR Date The date (day/month/year) of the SAR SAR Continuous
Base Year The baseline year for cost reporting SAR/Program Discrete
. . Nominal: AF, N ,
Service Component The lead service for the program Program omina Army avy. or
Joint Indicates that a program is funded by multiple services Program Binary
Nominal: New,
Iteration Separates new programs from modifications and variants Program Modification, or
Variant
Type Divides programs into mutually exclusive categories Program Nominal*
. Nominal: Development
Phase Indicates the program phase for each SAR SAR : v . P
or Production
. i . Nominal: Complete, or
Final Report Indicates the status of the program for the final year of data Program Below Threshold
Current APB Indicates the year of the Acquisition Program Baseline for each SAR Discrete
Dev APB Indicates the year of the first development phase Acquisition Program Discrete
Prod APB Indicates the year of the first Production Phase Acquisition Program Discrete
RDT&E Research, Development, Test and Evaluation cost estimate (in SAR Continuous
Procurement Procurement acquisition cost estimate (in SAR base year $) SAR Continuous
MILCON Military Construction acquisition cost estimate (in SAR base year SAR Continuous
Acq O&M Acquisition Operation and Maintenance cost estimate (in SAR base SAR Continuous
Total ($M)> 23 Reported total acquisition cost estimate (in SAR base year $) SAR Continuous
Percent Expended Percent of program funds expended to date SAR Continuous
Years Funded® 2 Number of years a program is funded from initiation SAR/Program Discrete
APUC: Initial Dev The initial development baseline for Average Procurement Unit .
] Program Continuous
Baseline Cost
APUE;;::::}T Prod The initial production basline for Average Procurement Unit Cost Program Continuous
APUC: Current The current Average Procurement Unit Cost estimate SAR Continuous
PAUI;;SI:::;:J Dev The initial development baseline for Program Acquisition Unit Cost Program Continuous
PAUE;SIQ::&I Prod The initial production baseline for Program Acquisistion Unit Cost Program Continuous
PAUC: Current The current Program Acquisition Unit Cost estimate SAR Continuous
EngrVar Cost variance due to engineering changes ($M in SAR base year) SAR Continuous
i imati i h M in SAR .
EstVar Cost variance due to estimation assumption changes ($M in S SAR Continuous
base year)
QtyVar Cost variance due to Quantity changes ($M in SAR base year) SAR Continuous
TotalVar Total cost variance from previous SAR SAR Continuous
Schedule Breach Indicates that a program suffered a schedule breach SAR Binary
Tech Perf Breach Indicates that a program suffered a technical performance breach SAR Binary
Cost Breach Indicates that a program suffered a program cost breach SAR Binary
PAUC/ APUC Breach Indicates that a program suffered a unit cost breach SAR Binary
Indi if h i Nunn-M .
N/M ndicates if a program has ever experienced a Nunn-McCurdy Program Binary
Breach
MS-B The date of Milestone B (sometimes called Milestone 11) Program Continuous
Last Year of Production|Indicates the last year of production as reported in the current SAR | SAR/Program Discrete
Original Quantity Production quantity from initial Acquisition Program Baseline Program Discrete
Current Quantity Production quantity currently planned SAR Discrete

1) A natural logarithmic transformation of this variable is included as a separate variable in the
2) A square root transformation of this variable is included as a separate variable in the dataset.
3) A Box-Cox transformation of this variable is included as a separate variable in the dataset.

4) Type categories are: Aviation, Electronic, Ground Vehicle, Maritime, Munition, Space, ¢
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Table 4. Calculated Factors

Factor Name Description Level Variable Type
Corrected Base Year The base year used to report the inflation-corrected acquisition cost Program Discrete
Years Since MS-B The number of years since the Milestone B date, expressed as a decimal number| SAR Continuous
Since APB The number of years since the previously approved Acquisition Program SAR Continuous
DevCount® The number of approved Development baselines, to date SAR Discrete
AvgDevPerYr The number of development baselines, divided by the years since Milestone B SAR Continuous
ProdCount® The number of approved production baselines, to date SAR Discrete
Avg ProdPerYr The number of production baselines, divided by the years since Milestone C SAR Continuous
Dev Prod Ratio* Years spent in development phase, divided by years spent in production phase SAR Continuous
RDT&E (corr) Research, Development, Test and Evaluation cost estimate, corrected to program| SAR Continuous
Procurement (corr) Procurement acquisition cost estimate, corrected to program base year dollars SAR Continuous
MILCON (Corr) Military Construction acquisition cost estimate, corrected to program base year SAR Continuous
Acgq O&M (corr) Acquisition Operation and Maintenance cost estimate, corrected to program base| SAR Continuous
123 Cost Growth Factor, The current cost estimate divided by the final cost estimate .
CGF:# . . Continuous
(dependent variable, discussed below) SAR
PAUCPctDev The Program Acquisition Unit Cost as a percentage of the development estimate | SAR Continuous
PAUCPctPRod The Program Acquisition Unit Cost as a percentage of the production estimate SAR Continuous
PAUC Calc The Average Proc.u.r?ment Unit_Cost, cal_culated from the quantity and Continuous
acquisition cost estimates (discussed below) SAR
APUC Calc The Average Procurement Unit (;ost, calcylated from the quantity and Continuous
procurement cost estimates (discussed below) SAR
APUCPctDev The Average Procurement Unit Cost as a percentage of the development SAR Continuous
APUCPctProd The Average Procurement Unit Cost as a percentage of the production estimate | SAR Continuous
EngrVarPct Cost variance due to engineering changes, as a percentage of the acquisition cost| SAR Continuous
EstVarPct Cost variance due to estlmatl(IJr.\ .technlque/.'clssumptlon changes, as a percentage Continuous
of acquisition cost (discussed below) SAR
QtyVarPct Cost Variance due to Quantity changes, as a percentage of the acquisition cost SAR Continuous
PctAcgCost Total cost variance, expressed as a percentage of the acquisition cost (discussed | SAR Continuous
SchedBreachCum The cumulative number of schedule breaches SAR Discrete
TechBreachCum The cumulative number of technical performance breaches SAR Discrete
CostBreachCum The cumulative humber of acquisition cost breaches SAR Discrete
UCBreachCum* The cumulative number of unit cost breaches SAR Discrete
AllBreachCum The cumulative number of breaches of any kind SAR Discrete
QTYChange The production quantity change, expressed as a factor from the Milestone-B SAR Continuous
QTYChange_Final The final production quantity, expressed as a factor from the Milestone-B Program | Continuous
YearCount® ? The count of the SAR year SAR Discrete
Inflation Score The total of individual inflation factor scores, explained in detail, below Program Discrete
Weight The program weight, used by SAS-to we:*ight the observation according to Continuous
program completion (discussed below) Program
BY13 Estimate An estimate of the base year 2013 corrected acquisition cost SAR Continuous
BY13 Actual An estimate of the base year 2013 final reported acquistion cost Program | Continuous
Est Dollar Err The acquisition cost estimate error, expressed in estimated base year 2013 Continuous
dollars SAR

1) A square root transformation of this variable is included as a separate variable in the dataset.
2) A natural logarithmic transformation of this variable is included as a separate variable in the dataset.
3) A Box-Cox transformation of this variable is included as a separate variable in the dataset.
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Tables 3 and 4 also show what transformations, if any, have been applied to
variables in an attempt to linearize them. Transformed variables have a mathematical
operation, such as the square root, applied to every observation for that variable. The
goal of this transformation is to linearize the observations so that they may be predicted
by the linear model, and exhibit a normal distribution around the average value. Since
these transformations are tracked as separate variables in the analysis, they are added to
the total number of calculated parameters.

Many linearizing transformations can be accomplished by raising the variable to
some exponent. For example, the square root transformation mentioned above is
equivalent to raising the variable to the (1/2) power; an inverse transformation is
equivalent to raising the variable to the (-1) power. A common transformation technique,
called the Box-Cox transformation, uses a method in which the parameter of interest has
a variable exponent (1) placed on it, and this exponent is varied through a range of
specified values to find the one that best transforms the variable so that it exhibits
normally distributed residuals (Box and Cox, 1964). The chosen value of A is then
rounded to the nearest common transform while maintaining the properties of the best
transform. The best convenient value for A on the CGF parameter is A= -0.3, which is
approximately the inverse cube root. The only other Box-Cox transformed variable, as
shown in Table 3, is the total acquisition cost. An inverse square root transformation is
applied to this variable (A= -0.5).

Calculation of new factors from reported factors is expected to induce collinearity

with these recorded factors; however, when collinearity occurs, the best performing
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correlated parameter is retained in the final model. Discarding less useful parameters
with high correlation will improve the model, since model selection uses a metric enforce

parsimony, as described below.

Data Normalization

As mentioned in Chapter 2, it is typical for SAR analyses to “maintain the
integrity of the baseline” by normalizing cost estimates to control for changes in quantity
and inflation (Drezner et al., 1993:11). For the purposes of this research, adjusting for
changes in quantity would mask this especially large predictor of cost growth—recent
studies attribute nearly 40 percent of cost growth to quantity changes alone (GAO,
2012a). For this reason, cost estimates are not adjusted for quantity.

Inflation, however, is a nuisance factor since it creates a significant trend in the
data, but is not a parameter of interest in this analysis. Additionally, it affects most
programs equally, and can disguise other sources of estimate error. Therefore, the data
are corrected for inflation through the use of constant Base Year dollars. Correcting for
inflation is often unnecessary as most SARs for a given program are already reported in
constant Base Year dollars. This allows direct comparison of cost estimates within a
given program. Unfortunately, programs may change their Base Year when a new
acquisition program baseline (APB) is established (a Base Year change is common at the
start of the production phase). When this occurs, the incongruous data must be corrected

so that later estimates are directly comparable to the initial estimate.
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To correct program acquisition costs from one Base Year to another, each of the
four components of the total acquisition cost estimate must be recorded, since these
components each have a unique inflation index. These component costs are:

e Research, development, test and evaluation (RDT&E)

e Procurement

e Military construction (MILCON)

e Acquisition phase Operating and Maintenance (Acq. O&M)

Each of these components has its own inflation index. The inflation rates for
Navy and Army are published annually, and easily accessed using the Joint Inflation
Calculator. The inflation rates for the Air Force are also published annually, and may be
accessed in a variety of useful tools. For this study, the Air Force inflation rates are
extracted from the Air Force Financial Management and Comptroller 2012 version of the
Excel-based plugin that functions like a calculator (SAF/FMCE, 2012).

Performing Base Year corrections causes discontinuities in two other cost
estimates. The first of these is the unit cost estimate. The expected unit cost for a
program is estimated in the SAR using two metrics: The Average Procurement Unit Cost
(APUC) and the Program Acquisition Unit Cost (PAUC). To maintain the link between
the unit cost estimate and the program cost estimate, the APUC and PAUC are re-
calculated from the corrected Base Year program estimate, as shown in equations 1 and

2, below.
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Base Year Corrected Procurement Estimate 1)
APUCCALC =

Procurement Quantity

Base Year Corrected Program Cost Estimate )

PAUC, =
CALC Procurement Quantity

This recalculation also overcomes the challenge of missing data, since unit cost estimates
are not reported in Base Year dollars until several years after acquisition cost estimates
begin reporting in a common Base Year. Therefore, wherever Base Year data are
missing, or Base Year costs have been corrected to another Base Year, the calculated unit
cost estimates are used.

Cost variance is the second discontinuity caused by correcting to a different Base
Year. The equations for calculating cost variance are more complicated, and the
parameters for these calculations are not recorded in the SAR. For example, cost
variance due to economic considerations is “a change that is solely due to price-level
changes in the economy” (Hough, 1992:5). The source data used to calculate economic
variance are not given in the SAR. To maintain continuity, the original cost variance
numbers are used to calculate the annual and cumulative percent change using the
original Base Year. This normalization technique allows these numbers to remain
applicable when changing from one Base Year to another.

This method of describing factors as a percentage of the total acquisition cost is
useful for normalizing programs of different sizes and years. However, the impact of this

research is best conveyed through the use of actual dollars, since that is the natural
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measure for cost estimates. As mentioned previously, the four appropriation categories
that make up the acquisition cost estimate may be used to correct all programs to the
same Base Year in order to make a meaningful comparison. These components were not
part of the data collection effort for programs that have a single Base Year; therefore, this
inflation factor is estimated to give an approximate idea of the model’s efficacy in terms
of Base Year 2013 dollars saved. In order to report SAR estimates in terms of 2013 Base
Year dollars, the inflation rate for the appropriation categories is estimated. Very few of
the programs in this dataset have any MILCON or Acquisition O&M funding; when they
do, the amount is typically less than ten percent of the overall amount. Therefore, the
separate inflation rates for these two cost components are disregarded in cases where the
MILCON and Acquisition O&M amounts are unknown. For the two remaining factors—
Procurement and RDT&E funds—the raw inflation rates are averaged. This average
inflation rate differs by less than 1 percent from the actual inflation rate in any category,
for any of the years in the applicable date range. For the Army, the average rate is equal
to the funding-specific rates, since the same inflation rate is used for all of the applicable
categories. The BY13 Estimate, and BY13 Actual variables multiply the total acquisition
cost by the appropriate averaged rate to correct the reported dollar amounts into an
estimated 2013 Base Year dollar amount. Because of the error involved with the average
inflation rate, this estimate is not used in any regression or model-building activities; it is

only used to estimate the impact of the results in terms of real dollars.

39



Dependent Variable

Since this study is concerned with improving the accuracy of early acquisition
cost estimates, the parameter of interest is the error in these estimates. The accuracy of
each estimate is expressed as a ratio between the current cost estimate and the actual
program cost. This ratio, defined as the Cost Growth Factor (CGF), is calculated for each
SAR. For example, consider an acquisition program with ten SARs. For the purposes of
this research, the tenth and final SAR establishes the final program cost. The nine
previous estimates are likely to differ from the actual program cost, overestimating or
underestimating the final cost by varying degrees. This relationship is shown in equation

3, below.

Actual Program Cost
CGF,; = 5 €)

Cost Estimate i

Where i is the number of the cost estimate, numbered sequentially from

the initial estimate starting at 1
Overestimates (that is, coming in under budget) are illustrated by CGF values less than
one, and underestimates (that is, cost overruns) are illustrated by CGF values greater than
one. Intuitively, the cost estimate error for a given SAR may be calculated by taking one
minus the CGF. Once a program’s predicted CGF is calculated for the initial estimate—
that is, the first SAR after Milestone B—then this estimate can be corrected to equal the
actual program cost by simply multiplying the estimate by the predicted CGF.

One clarification must be made to the definition of CGF provided above: the

actual cost of a program is not explicitly specified in the SAR. For the purposes of this
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research, it is assumed that the final estimate is the actual program cost, although SARs
are only required until a program is 90 percent expended, or has delivered 90 percent of
its units. In the cases where the program is at least 92.5 percent expended, this estimate
is shown not to be statistically different from final program cost (Tracy, 2005). Some of
the estimates in the dataset meet or exceed this 92.5 percent threshold, though the vast
majority do not. The implications of this assumption are discussed in Chapter 5.

The practice of calculating the CGF for each program year, rather than just the
initial year, allows the construction of trajectories that aid the predictive capability of the
model. As a program progresses, it may exhibit significant patterns in certain predictors
that affect the estimate error in a predictable way. For example, the procurement quantity
may not be a significant predictor of CGF. However, a change in the procurement
quantity may be associated much more strongly with CGF. Therefore, this analysis
methodology embraces the longitudinal nature of the SAR data in order to draw

inferences.

Statistical Model

Longitudinal data are characterized as an aggregation of measurements taken on
the same subject over time. These repeated measurements across time violate the
assumption of independence that is common in general linear models. Furthermore, non-
uniform reporting intervals and missing data further violate assumptions made by these

general models. Features of this dataset include:

41



e Dependence of data across time,
e Non-constant variance,

e Missing observations, and

e Non-uniform measurements.

While this study assumes independence between programs, it must account for the
lack of independence within programs. For example, the correlation between two
consecutive cost estimates (say, the 2004 and 2005 F-22 cost estimates) is expected to be
higher on average than the correlation between estimates from two programs (for
example, the 2004 F-22 estimate and the 2004 F-16 estimate ). Therefore, the correlation
between programs is assumed to be zero, but the correlation within programs cannot be
assumed to be zero. If unaccounted for, this dependence incorrectly inflates the variance,
possibly resulting in a model that contains insignificant parameters (Patetta, 2002).

In addition to this dependence, observations between programs are not expected
to be identically distributed, either. This assumption of identical distribution implies that
the errors (and thus the response) of a given program exhibit similar variance, a common
assumption in studies where measurements are taken from similar processes that result in
similar variance. However, since novelty is an intrinsic trait of DoD acquisition
programs, they are expected to exhibit disparate variance. In fact, if all programs
exhibited similar variance, this study would not be necessary, since it would be a simple
matter to calculate a prediction interval that enclosed some known percentage of the

acquisition portfolio.
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Finally, the SAR dataset is comprised of longitudinal data with missing
observations and non-uniform measurement periods. For example, as noted earlier, very
few programs delivered a SAR in 2000, or in 2008, due to the delay in the President’s
budget submission. While most programs submit SARs on an annual cycle, some
programs experience unacceptable threshold breaches and are required to generate an
out-of-cycle SAR. Missing data and such aperiodic measurements can cause errors in
parameter estimate calculations unless allowances are made in the linear model structure
to account for these inconsistencies.

To overcome these difficulties, a mixed-model approach is adopted. The mixed
model is a more flexible formulation of the general linear model that adds random effect
parameters to allow for differences between subjects, and also allows for “a more flexible
specification of the covariance structure of the random errors” (Patetta, 2002:61). Both
of these additions are useful. The random effect parameters allow for proper treatment of
continuous data that do not follow levels prescribed by an experimental design, but are
observed randomly. The flexible covariance matrix allows for the treatment of time-
series dependence and non-uniform data through the introduction of additional model

parameters. The mixed model takes the form shown in equation 4.

y=Xp+Zy+¢ ()

Where: y is the vector of observed responses
X is the design matrix of fixed predictor variables
s the vector of regression parameters (population-specific)
Z is the design matrix of random predictor variables
v is the vector of random-effect parameters (subject-specific)
¢ is the vector of random errors
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The vector of regression parameters () contains the parameters that describe the whole
population, and are assumed to result from fixed variables. For example, categorical
descriptors such as Service Component and Program Type are fixed throughout the life of
a program, and represent a mutually exclusive and collectively exhaustive set of factors
for this data set. The vector of random-effect parameters (y) contains all of the
parameters that vary within a program. These random-effect parameters can account for
program-specific deviations from the average profile. Isolating the fixed and random
effects into two categories prevents the heterogeneity within programs from obfuscating
the difference between programs. In other words, it is capable of accounting for
variability that exists within a program that would otherwise be labeled a source of error
in a general linear model.

The variance of the general linear model is said to take the form c?l. That is, the
only source of variance arises from the random errors, and these are assumed to be
independent (between measurements) with constant variance. However, as discussed
above, the variance of the Linear Mixed Model (LMM) can take on a different forms to
account for the lack of these simplifying assumptions. The variance structure in the
LMM takes the form in equation 5, where G and R are the two components of the

variance structure, and are uncorrelated with each other (Kincaid, 2005).

Var(Y) = var [Y] —[¢ 0] (5)

e 1lo R
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The R matrix represents the variances and covariances associates with the error terms of
the model, and the G matrix, represents the variances and covariances associated with the
random effects. This covariance structure must be modeled, and—depending on the
selected structure—may contain relatively few, or a great many, parameters to estimate.
Fortunately, it is only necessary to model one component of the variance.

Selection of a structure for the covariance matrix is the subject of many scholarly
articles, and no best method has been established. One author states that “One important
question which, unfortunately, still has no good answer is how to select the covariance
structure” (Kincaid, 2005:1). The initial data exploration and model construction allows
estimation of different covariance structures that are used during selection of the final
statistical model. Four covariance structures are assessed during the model-building
phase: first-order autoregressive, compound symmetry, Toeplitz, and unstructured. The
elements of the covariance matrix under each of these structures are summarized in Table
5. The first-order autoregressive—abbreviated as AR(1)—structure assumes that
consecutive observations on the same subject are correlated, but this correlation decreases
by a factor (p) as the distance between observations increases. The first-order
autoregressive structure is expected to be the most appropriate for the data, since most
consecutive observations are correlated by some amount, and this correlation is expected
to decrease with successive estimates. The compound symmetry structure assumes a
correlation between measurements (variances, on the diagonal) but assumes that all of the
off-diagonal covariances are homogenous, regardless of proximity. The Toeplitz

structure is a more general case of the AR(1) structure, which assumes correlation based
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on proximity, but allows the correlation to follow different patterns. Finally, the
unstructured covariance, as the name suggests, allows every variance and covariance to
be modeled. Other structures may be specified in the statistical software, but only these

four are considered to scope this design effort.

Table 5. Selected Covariance Structures

Structure (i,)" element ‘
Autoregressive (1) g2 pli-il
Compound Symmetry o, +c?l(i =)
Toeplitz Oli-jl+1
Unstructured 0

To estimate the efficiency of both the covariance structure and the model
parameters, a range of candidate model parameters are tested for significance along with
a range of candidate covariance structures. Then a model selection criterion is used to
determine if the model is better or worse than the previous model. The model selection
criterion used is the Bayesian Information Criterion (BIC). The BIC is a member of a
family of similar “information criteria” that penalize overly-large models (Kutner et al.,
2004:359). This penalty is required since the addition of predictors to a model will
almost always increase the accuracy of the model, but such models quickly become very
cumbersome and may overfit the observed data. The model selection criterion computes

an efficiency factor that is increased as the model approximation gets better, but is
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penalized as more parameters are added. This method ensures a parsimonious model by

selecting the smallest number of parameters that best describe the data.

Model Selection

Many modern statistical software packages have routines that automatically select
the most parsimonious model from user-selected criteria, such as BIC. However, no such
automatic selection procedure exists for mixed models. Also, simply running every
possible combination of parameters and performing the BIC calculation is unwieldy,
since the 75 variables shown in Tables 3 and 4 may be combined to form 3.77x10% main
effect combinations—that is, 0.38 sextillion®. Since the mixed model may include main
effects, multi-factor interactions, and random effects (along with their multi-factor
interactions), the actual number of feasible combinations is much higher. Clearly, this
many combinations is prohibitively large, even for a computer.

Model selection is performed by manually testing combinations of parameters
using statistical software and observing their effect on the BIC in an iterative fashion.
Testing single parameters for significance individually is informative but insufficient,
since multicollinearity and conditional significance may cause one previously significant
parameter to become insignificant while unnecessarily inflating the variance in the
model. Thousands of combinations are examined and the resulting predictive capability

is periodically tested.

4 Thic s : ; ioori o (75 75\, .. . (75
This is calculated by computing the feasible subsets of model combinations: (75) + (74) + 4 ( 1 )
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This model selection procedure is performed in SAS version 9.3 using the mixed
procedure. This procedure allows the specification of fixed effect terms, random effect
terms, and a covariance structure, among other modeling criteria. SAS automatically
computes the BIC for each model and outputs statistics used to assess the model validity,
such as residual plots, and normal quantile plots. These outputs are discussed in detail in
Chapter 4, and the SAS code used in this analysis is provided in Appendix A.

As discussed above, the filtering criteria for database formation require that
programs are 50 percent expended and 25 percent procured. This threshold allows 22 of
the 70 programs into the dataset that may be deemed relatively mature, but not complete.
Since these programs may still have substantial program life that could alter predictions
of the CGF, and since the final year of the acquisition phase is uncertain, these
observations are weighted to reduce their effect on the model. The weighting scheme for
each program is determined by the final estimate for that program, using the relationship

in equation 6.

1, For completed programs ©)

Weight,, = { P,, Otherwise

Where P = Percentage of program acquisition cost expended to date

In equation 6, Pe is defined as the percentage of a program’s funding that has
been expended at the time of the SAR. However, since the program funding is subject to
change, the percentage of these funds that is expended will sometimes behave

paradoxically, seeming to decrease as a program is expanded. For the purposes of the
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weighting algorithm, every observation within a program is weighted according to the
final estimate of the available funding and, therefore, the final value of Pe. For programs
that are incomplete, the program funding may change in future baselines, invalidating the

assumed model weight for that program.

Descriptive versus Predictive Model

The first model created to describe CGF is the descriptive model. In this model,
the individual acquisition programs are specified as the subjects, allowing the model to fit
each program individually. This method results in 70 different regression models, and
this level of specificity ensures a high degree of accuracy in predicting the past
performance of the programs in the dataset. While this method may be used to
demonstrate the validity of the macro-stochastic concept, it is not useful for predicting
estimate error in future programs since the exact trajectory of these programs will not be
repeated. Therefore, a predictive model must be developed that serves this application.

While the descriptive model specifies each program as its own subject, the
opposite extreme—placing all programs into a single group—is not useful either. Since
all programs are not expected to follow the same trajectory, this simplifying assumption
decreases the resolution of the resulting model. The optimum predictive capability for
the regression is achieved when subsets of programs are binned into some number of
smaller groups. Then, the best model for predicting the trajectory of a new program may
be applied by comparing the new program to the characteristics of the grouped programs.

The predictive model is formed under the assumption that future acquisition
programs will follow the pattern of similar, past acquisition programs. This assumption
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implicitly requires a basis for comparison of similar programs (so that the appropriate
group may be used to predict a new observation). For the purposes of this study,
similarity is determined by the nominal program descriptors associated with trends in the
CGF. For example, perhaps programs that have fixed macro-level descriptors associated
with high cost growth will perform similarly to future programs with the same
descriptors. These descriptors will need to contain fixed levels, since the variable levels
of a new program must be known with certainty at program initiation.

To properly place programs into these categories, the cost growth must first be
associated with different nominal variables. The four variables that are the most strongly
associated with a trend in cost growth are selected, and each of these variables is split
into levels. Table 6 shows that the four parameters used to score each program are: Joint,
Iteration, Program Type, and Years Funded. Table 4 indicates the categorical levels
associated with each parameter. For example, Iteration has three levels: New,
Modification and Variant. However, these levels do not necessarily align with significant
differences in cost growth (for example, the difference in cost growth between Type
levels Maritime and Munition is small). Using every possible factor-level combination
would produce too many program groups with too few programs in each group.
Therefore, the levels of each variable are combined into groups that ensure a large sample
size in the final program groups. Based on this balance, factor levels with little
difference in their average CGF are combined, and the levels of the variables are

determined as shown in Table 6.
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Table 6. Cost Growth Factor Contributors and Levels

Joint CGF Average N Score Years Funded CGF Average N Score

N 1.19 1.19 749 +0 9 1.055
Y 1.59 1.59 188 +2 10 1.040
11 1.015

Iteration CGF Average N Score 12 0.981 0.99 149 -1
Va.\r'lant. 1.04 1.10 232 +0 13 0.829
Modification 1.17 14 1.015
New 1.32 1.32 705 +1 15 1.050
16 1.30
Program Type CGF Average N Score 17 1.14

Space Launch 0.99 0.99 35 -1 18 0.79 1.10 197 +0
Maritime 1.17 19 1.10
Munition 1.19 121 505 +0 20 1.18
Electronic 1.23 21 2.03
Ground Vehicle 1.24 22 1.13
Aviation 1.33 1.33 325 +1 23 1.10
Space 1.59 1.59 72 +2 24 1.46

25 1.42 1.29 409 +1
26 1.13
27 0.93
28 1.20
29 1.24
31 1.58
33 1.06
34 1.05
35 1.67

37 1.01 1.51 182 +2
39 1.06
43 3.24
45 1.56
48 1.33

Once the variable levels are established, they are combined for assigning a new
program to a single group. To accomplish this, each variable level is assigned a score
based upon its contribution to the CGF. For example, since the first level of the variable
Program Type has a CGF of 0.99 on average, this level is assigned a score of -1, since it
contributes a decrease in the CGF, on average. The average CGF in each variable level is

used to assign such a score, according to equation 7, below. Then the total program score
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is used to bin programs according to a linear combination of their cost growth scores.

The sum of these scores is called the Cost Growth Score.

-1 CGF <1
_Jo 1 < CGF < 1.25
Cost Growth Score = +1  1.25 < CGF < 1.5 (7)
+2 CGF > 15

With these scores established, each program in the dataset may be scored
according to the observed levels of these four parameters. For example, the F-22
program is a new, non-joint aviation program that is funded for 34 years. Using Table 6
as a key, we see that this earns this program a Cost Growth Score of 4. By this method,
each program is assigned a Cost Growth Score, and the resulting scores form the
distribution shown in Figure 1. These six cost growth score bins are used as the subject
in the predictive model. Note that bin six only contains three programs. This bin may
have insufficient sample size for accurate predictions, a concern that is tested in the
model validation step. Since the algorithm for grouping programs considers variables
associated with cost growth, programs in the lower cost growth groups can be thought of
as low-growth programs, while programs in the higher cost growth groups can be thought

of as high-growth programs.
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Figure 1. Histogram of Program Cost Growth Group

Predictive Model Validation

Validation of the final predictive model demonstrates the ability to predict the
acquisition cost estimate error of certain programs. Since the data only sparsely populate
certain factor-level combinations, it is undesirable to divide the data into a training and
test data set for validation. Therefore, the entire dataset is used for model construction,

and a modified version of the Leave One Out Cross Validation (LOOCV) method is used

to validate the model.

The traditional LOOCV method involves fitting the model with all of the data,

minus one observation, and then to assess the model’s ability to accurately predict the
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dependent variable associated with this omitted observation. The traditional method is
not sufficient in this case since the model is not trying to predict a single observation, but
rather the entire trajectory of a new program. Therefore, this research requires that,
instead of a single observation, an entire program is omitted, and the remaining programs
in that category are used to predict the estimate error in the omitted program (Ryan et al.,
2013). The omitted program is then incorporated into the data once again, and the next
program is omitted. Then a new set of values for each model parameter are calculated and
the CGF is predicted for each SAR for that program. In this way, an entire program
becomes the observation. While the significance of model variables is determined with
all data in the model, this technique ensures that the specific parameter estimates for each
variable are determined without the knowledge of the program they are used to predict.

In this way, the prediction capability of the model relative to each program category is
shown by its ability to predict this omitted program. If poorly predicted programs exhibit
a pattern (for example, if they are all Army munition programs), then this fact may be

used to invalidate the model for that specific combination of parameters.
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IV. Analysis and Results

Chapter Overview

In this chapter, the methodologies described in Chapter 3 are employed to conduct
analyses and construct a descriptive and predictive model. The predictive model is
validated using the modified Leave-One-Out Cross Validation (LOOCV) described in

Chapter 3, and the resulting model efficacy is demonstrated.

Uncorrected Error

The CGF for each estimate in the dataset may be examined to determine the
average estimate error. This error, before any model corrections are applied, is referred
to as “uncorrected” error in the discussion below. Figure 2 shows the error present in the
SAR estimates plotted against program expenditure. The uncorrected CGF, averaged
across programs as well as time, is 1.27, indicating that the average SAR from any
program in any year is underestimating the actual program cost by 27 percent. However,
this figure also confirms what we would intuitively expect: that program cost estimates
are the least accurate near program initiation and improve with program maturity.

The CGF based on the first estimate of the program follows the distribution
shown in Figure 3. This figure indicates that eleven programs in the data set (nearly 16
percent of the total) reported a final acquisition cost that exceeded their initial estimate by
over 100 percent (a CGF greater than 2.0). In fact, only 25 of the 70 programs reported a
final cost within 25 percent of their initial estimate. The mean value of the CGF from the

first estimate is approximately 1.44, indicating that new MDAPS underestimate their
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eventual cost by 44 percent, on average. Using only this mean value, we might consider
simply adding 44 percent to the first cost estimate of all new MDAPs. However, the cost
estimate error varies widely by program—the standard deviation from the average is 72
percent. Adding 44 percent to all initial program estimates might bring the average error
closer to zero, but would not address this variation. In other words, the absolute
deviation from the initial estimate is reduced by correcting programs individually (this is
what the descriptive model does) or in groups (this is what the predictive model does).
Since overestimation and underestimation are considered equally detrimental for
the purposes of this research, the absolute value of the estimate error provides additional
insight when describing estimate error. The absolute value of the uncorrected estimate
error is 34 percent, averaged across all programs and across time. Again, this error is
worst at the outset of the program, with an absolute estimate error of 57 percent on
average for the first estimate. This means that the average MDAP will have an eventual
cost that is 57 percent different from what the initial estimate predicts. It is this initial,
absolute error that the descriptive and predictive models are employed to reduce. The

uncorrected error summary is presented by Table 7.

Table 7. Average Uncorrected Cost Estimate Error

Absolute

Estimate Error i
Estimate Error

Time-Average
Initial Estimate Only
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Descriptive Model

The results of the models take the form of predicted values for CGF. These
predicted CGFs may be used to correct the observed error in each SAR, bringing the
estimates more in line with the actual, eventual program cost. Recall that the descriptive
model is formed by placing each program into its own category, allowing the regression
to uniquely fit the model parameters to each program individually. Including the
intercept, the descriptive model has eight main effects and eighteen terms in total. These
variables are shown in Table 8. Note that the transformations performed on the
interactions are the same transformations performed on the main effects; therefore, these
are labeled “N/A.” For example, since the main effect for the Quantity Change variable
was transformed using the natural logarithm, this same transform is used in the
interaction. Variables that are in the main effects, but also included in the random
effects, are indicated by a “Yes” in the column labeled “Included in Random?” Table 8
indicates that all parameters except Year Count and Years Funded are included as random
effects. For the descriptive model SAS code, see Appendix A.

A first-order autoregressive—AR(1)—covariance structure best models the
dependence within the cost estimate data. This structure resulted in a lower BIC for
every examined combination of parameters, though the difference varied depending on
the specific model being tested. The AR(1) covariance structure assumes that sequential
observations are correlated; the “sequential correlation” parameter is a measure of how
strongly these observations are related. The parameter estimate values for the sequential

correlation (p) is estimated and shown with the model outputs in Appendix A.
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Table 8. Parameters in the Descriptive Model

Main Effects Transform Included in Random?
Iteration - Yes
Type - Yes
Dev Prod Ratio sgrt Yes
Acquisition Cost sqrt Yes
EstWarPct - ¥es
QOtyChange In Yes
Year Count In Mo
YrsFunded - Mo

Interactions Transform Included in Random?
Iteration*Type N/A MNo
Type*QtyChange N/A Yes

Descriptive Model Adequacy

Robust statistical models require that any variables included in the random terms
must be included in the fixed effects as well, to avoid introducing bias. Also, any
variables used to construct an interaction term must also exist in the model as a main
effect to capture their individual contributions to the model. Table 8 shows that both of
these conditions are met.

It is also important that the mixed model exhibit normally distributed residuals,
since this distribution is assumed when using the maximum likelihood regression method
(used by SAS in Proc Mixed). SAS automatically performs residual calculations and
outputs several plots that may be used to assess their distribution. These plots are
generated for the descriptive model shown in Figure 4. The residuals resulting from the
descriptive model exhibit the desired bell-shape, but do not follow the expected
distribution in the extremes. Rather, they exhibit a condition often referred to as “long
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Figure 4. SAS Residual Plot Output for Descriptive Model

tails.” These long tails are due to several programs which are not predicted well by the
model. As the model is improved, the majority of programs are more accurately
predicted. But programs that were poorly-predicted initially are not improved, causing
the residuals to become less normally distributed. This lack of normality makes model
interpretation difficult, though it does not affect the model’s power so long as the
residuals are symmetrical. Also, as shown by the results, the error in these “poorly
predicted” programs is below the level of practical significance, since their cost estimates

are still greatly improved by the model. For example, Figure 4 shows that nearly all of
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the large residuals are for estimates from the SBIRS High program. After the model is
used to correct program cost estimate error, SBIRS High still exhibits the largest single

residual, but over 95 percent of the error in that estimate is eliminated.

Descriptive Model CGF

In contrast to Figure 2, Figure 5 demonstrates that the descriptive model
compensates for the vast majority of error in acquisition cost estimates for historical
programs. The mean descriptive model-corrected CGF for all SARs is 1.0009, and the
absolute model-corrected error is 0.4 percent. This represents, a 98.7 percent reduction of
the error in the estimates. Figure 5 shows the estimate error plotted against Percent
Expended; the axis is scaled to allow direct comparison with Figure 2. However, this
coarse scale obscures any of the patterns in the model-corrected graph. The model-
corrected error, plotted against Percent Expended, is shown again in Figure 6, with the
axis constrained to + 20 percent. This figure further illustrates the corrective power of
the descriptive model. The only outliers on this graph are for the Space Based Infrared
(SBIRS High) program. The rest of the observations are corrected to within 2 percent of
the actual, final program cost.

Table 9 shows the summary for the descriptive model-corrected errors. The
“Absolute Uncorrected” row lists the average of the absolute error with no model
correction; the “Absolute Descriptive-Corrected” row shows the remaining absolute error

after the descriptive model is used to correct the CGF.
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Table 9. Average Descriptive Model Cost Estimate Error Reduction

Whole Program First Half First Quarter First Estimate

Absolute Uncorrected 33.7% 44.5% 50.6% 56.7%
Absolute Descriptive-Corrected 0.4% 0.6% 0.7% 0.4%
Percent Error Reduction 98.7% 98.7% 98.7% 99.3%

Table 9 illustrates that the descriptive model reduces 98.7 percent of the error in
cost estimates, on average, across program life (the “Whole Program” column). It also
shows that an equivalent reduction is achieved if averaged over the first half, or first
quarter of the estimates. In other words, the descriptive model is equally useful

throughout the life of the program.

Descriptive Model Confidence

SAS has the capability to calculate the prediction intervals around the model-
predicted value. However, these prediction intervals are formed around the transformed
dependent variable and cannot be easily interpreted. When these intervals are transformed
back into linear percentages, the non-linear transform causes the intervals to take values,
in some cases, in excess of a thousand percent. Since this non-linear transform makes
interpretation difficult, fixed ranges around the predicted value are examined to
determine the percentage of true CGF values captured.

For the descriptive model, it is not surprising that the interval is very narrow.

Bounds of just +0.5 percent are enough to capture 91 percent of the true values. Bounds

of +1 percent capture 97 percent and bounds of +2.5 percent capture 99 percent of the
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true values. These narrow bounds imply a high degree of confidence in the predictions

from the descriptive model.

Predictive Model

The results of the descriptive model illustrate the power of the macro-stochastic
approach to cost estimating. However, this model is not useful for predicting future
programs since the subject is the individual program, and the parameter estimates from a
specific program cannot be extrapolated to a new program. Therefore, the regression is
conducted once more using the bins that group similar programs according to their total
cost growth score, as discussed in Chapter 3. Parameter combinations are tested using
these Cost Growth Groups as the subject; the resulting model has six main effects and

eleven terms, including the intercept. This model is summarized in Table 10.

Table 10. Parameters in the Predictive Model

Main Effects Transform Included in Random?
Service Component - Mo
Dev Prod Ratio sqrt Mo
DevCount - Mo
Acquisition Cost Box-Cox Yes
QtyChange sqrt Yes
Year Count sgrt Mo

Interactions Transform Included in Random?
Component*DevProdRatio N/A Mo
AcquisitionCost*YearCount N/A Mo
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The predictive model has two fewer main effects, and eight fewer terms than the
descriptive model. There are several reasons for this difference. First, some of the
parameters that are associated with the CGF in the descriptive model are used to bin
programs into groups for the predictive model. For example, notice that Type, Iteration,
and Years Funded are in the descriptive model, but not the predictive model. Since these
terms make up three of the four variables that determine the program grouping, they still
influence the inferences from model, but their parameter estimates are convolved with the
intercept term and group-specific trajectories. Second, the descriptive model fits each
program individually, which allows this model to accurately resolve the trends in each
program. When several programs are combined into a group these trends may average
out, obfuscating a once-meaningful relationship and replacing it with noise. This
condition results in fewer meaningful parameters, and a greater chance of over-fitting the
model. For these reasons, the size difference between the descriptive and predictive
models is justified.

A first-order autoregressive—AR(1)—covariance structure best models the
dependence within the data. Note that this is the same structure selected for the
descriptive model. This structure results in a lower BIC for every examined combination
of parameters. The parameter estimate value for the sequential correlation (o) is

estimated and shown with the model outputs in Appendix A.
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Predictive Model Adequacy
As with the descriptive model, interactions are only composed of main effects,

and all random effect terms are duplicates of a fixed effect. The SAS-generated residual

plots are shown below in Figure 7.
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Figure 7. SAS Residual Plot Output for Predictive Model

The residuals for the predictive model are normally distributed, with the exception
of a cluster of high-residual observations. These points are a mixture of Excalibur (an

Army munition program), HIMARS (an Army ground vehicle program), and F-14D (a
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Naval aircraft program) observations, though not all observations for these programs are
outlying. This mixture of qualitatively different programs seemingly prevents any
categorical assessment from omitting these observations. The plot of residual versus
predicted CGF points out another noteworthy data feature: the V-22 program is an
extreme outlier with regards to uncorrected estimate error. However, this program is
predicted very well, and most of the error in these estimates is eliminated, representing a

99.8 percent error reduction in the early program estimates.

Predictive Model-Corrected Estimate Error

The predictive model predicts the CGF in each observation and this prediction is used to
correct the original acquisition cost estimate, just as with the descriptive model. The
results with this correction applied are shown in Figure 8. Notice that the predictive
model-corrected estimates grow slightly better over time, as many of the parameters in
the model (such as DevCount) are correlated with program duration. This figure should
be compared directly with Figure 2, which shows the uncorrected estimate error plotted
with the same axis dimensions.

Recall that the uncorrected mean absolute error was 34 percent. The predictive
model has an overall mean error of 5.6 percent (underestimating), and the absolute error
corrected by this model averages 20.4 percent, representing a 39.4 percent reduction from
the average uncorrected cost estimate error. This model does not perform as well as the
descriptive model since the individual cost error trajectory of each program is not

modeled; rather, the trajectory of a group of programs is modeled.
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Figure 8. Predictive Model-Corrected Estimate Error by Percent Expended

Table 11 shows a summary of the predictive model performance. The
performance of this model depends on the maturity of the estimate being corrected. For
example, the predictive model reduces an average of 39.4 percent of the cost estimate
error when applied to a cost estimate, selected at random. However, if this cost estimate
is chosen at random from the first half of the program life, the error is reduced by 46.7
percent on average; if the estimate is chosen from the first quarter of program life, the
error reduction is expected to be 53.2 percent, on average. This decreased utility over
time is expected because, while the predictive model gets slightly better with repeated
observations, the SAR estimate tends to converge to the actual cost as the program

approaches completion.
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Table 11. Average Predictive Model Cost Estimate Error Reduction

Whole Program First Half First Quarter First Estimate
Absolute Uncorrected 33.7% 44.5% 50.6% 56.7%
Absolute Predictive-Corrected 20.4% 23.7% 23.7% 30.1%
Percent Error Reduction 39.4% 46.7% 53.2% 46.9%

Model Validation

The predictive model is capable of reducing estimate inaccuracy by more than
half when used early in program life. However, these results are still not representative
of a true prediction, since the program data for each of the predicted observations is used
when fitting the model. The modified-LOOCV methodology, described in Chapter 3, is
used to build 70 separate predictive models, each with a single program omitted. These
models are then used to predict the correction factors for each SAR of each omitted
program. The individual results from these 70 model validations are aggregated to
estimate the predictive power of the model, and this aggregation is referred to as the
“validated model” (though it technically represents 70 different validated models). The
results for the validated model are shown in Figure 9, plotted with the same axis
constraints as the previous figures in order to allow direct comparison.

The validated model has a mean of 12.6 percent (underestimating), and the
average absolute error for the validated model is 27.4 percent. This error represents an
18.7 percent improvement from the uncorrected data, though the performance is more

markedly improved when applied to earlier program estimates, as shown in Table 12.
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Figure 9. Validation Model-Corrected Estimate Error by Percent Expended

Table 12. Average Validation Model Cost Estimate Error Reduction

Whole Program First Half First Quarter First Estimate

Absolute Uncorrected 33.7% 44 5% 50.6% 56.7%
Absolute Validation-Corrected 27.4% 31.9% 34.2% 35.8%
Percent Error Reduction 18.7% 28.3% 32.5% 36.9%

Validated Model Confidence
As with the validated model, the non-linear transformation on the dependent
variable makes the customary prediction intervals difficult to interpret. The same fixed-

bounds method is used to evaluate model confidence, though these intervals are expected
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to be wider than those for the descriptive model. Bounds of £20 percent around the
validation model CGF predictions capture 71 percent of the true CGF values.
Bounds of +35 percent capture 90 percent of the observed values and bounds of 45
percent capture 95 percent of the observed values. The usefulness of these bounds is

discussed in Chapter 5.

Validated Model Efficacy over Program Life

As explained above, the uncorrected estimate error trends towards zero as
program acquisition nears completion, while the model predicting this error does not.
For this reason, the predictive model is best used early in a program’s life. Since the goal
of this research is to provide a supplemental cost estimating tool for use early in program
life, the efficacy of this tool is examined as a function of program life in Figure 10.
Figure 10 shows the percentage of all estimates that are improved by the validation
model, plotted against the percent of program expenditure, rounded to the nearest 5
percent. For example, the validation model improved 21 of the 29 SAR estimates (72
percent) produced when the program was approximately 5 percent expended. These data
suggest a linear relationship, and this relationship—shown by the regression line in
Figure 10—indicates that for each additional percent expended, the model loses nearly
three-quarters of a percent of its predictive power. Equation 8, shown below, explains

88.4 percent of the variance—a strong relationship.
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Percent of Estimates Improved = 0.7436 — 0.7304 - (Percent Expended) (8)

This metric requires striking a balance between sample size for each average, and

sample size for the linear regression. Figure 10 uses twenty-one data points to fit the

demonstrated curve. These data points are created by rounding the program expenditure

(reported to four decimal places) to the nearest five percent, but rounding up to the

nearest ten percent, or down to the nearest 2.5 percent yields a similar equation and R-

square. This tolerance indicates that the demonstrated relationship is robust, and not just

an artifact of the rounding method.
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Model Efficacy by Program Cost Growth Group

Figure 11 shows the improvement in the absolute cost estimate errors, stratified
by cost growth groups. Notice that the model performs much better against cost
estimates with high amounts of initial error, as expected. Since the algorithm used to
group programs incorporates parameters associated with cost growth, model efficacy can
be improved by applying it only when it is expected to have a significant improvement on

the estimate accuracy.

180% 174%

160%
140%
120%

100%
° 87%

80% 69%

60% 499% 50%

a,
40% 58% 33%
19%

24% 2%
20%  159% 179 l .
O% J | | | | | |

1 2 3 4 5 6
Cost Growth Group

Percent Error (Loweris Better)

W Uncorrected Error OValidation-Corrected Error

Figure 11. Absolute Estimate Error by Cost Growth Group, Average over First
Quarter of Program

73



As shown in Figure 11, the difference in uncorrected and corrected error for the
first three groups—collectively called low-growth programs—are all less than 5 percent.
While this 5 percent represents a 15 percent reduction, on average, the relatively accurate
initial estimates mean that the practical significance of the model is limited. In contrast,
the difference for the latter three groups—collectively called high-growth programs—
represent an error reduction of 38 percent on average, and as high as 50 percent in group
6. Model performance in these programs is more likely to be deemed practically
significant by the user. Applying the model to the initial estimates for all 70 programs
improves 49 of them (70 percent). If the model is applied only to the 30 initial estimates

in cost growth groups four through six, 27 of them (90 percent) are improved.

Considerations for Program Size

The metrics discussed above normalize the model results for program size by
reporting estimate error as a percentage of the final acquisition cost. This normalization
removes a meaningful result from model-corrected estimates. The goal of this research is
to improve allocation of actual dollars and it is possible that model performance varies by
program size. For instance, it’s possible that the model improves small-dollar programs,
but not high-dollar programs, resulting in overall poor performance in terms of absolute
dollars. Using the Base Year 2013 estimated inflation rates, a metric is constructed
which subtracts the model-corrected estimate error from the uncorrected estimate error,
and converts this improvement to Base Year 2013 dollars. For example, consider an
estimate for a $500 million program which is known to have 10 percent absolute error (an
error of 50 million dollars). If the validated model corrects this error to only 5 percent (an
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error of 25 million dollars), then the model is said to have improved resource allocation
by 25 million dollars. Note that the absolute error is what matters, since overestimation
and underestimation are considered to damage resource availability by equal amounts.

If the validation model is applied to the first estimate of each program in the
dataset, the total number of dollars reallocated is $91.0 billion (Base Year 2013). Due to
the completion criteria placed on the data, there are no initial estimates after 2007,
equating to an average of $4.3 Billion per year, when averaged over the 21 year span for
the dataset. This reallocation does not mean that the DoD overspends by $4.3 Billion per
year, but rather that this amount is inefficiently allocated due to the total effect of
programs poorly estimating their actual resource needs by varying degrees.

Figure 12 shows that the model performs poorly for the smallest MDAPs—those
with less than $2 billion in actual BY13 cost. These programs make up 13 of the 70
programs, about 19 percent. For MDAPs with a final cost between $2B and $5B, and
those greater than $20B about 5 percent improvement is seen. These programs account
for 27 of the 70 programs in the dataset, about 39 percent. The largest improvement is
seen on the remaining 30 programs with between $5B and $20B in actual cost. Because
the combined cost of the smallest programs is eclipsed by those in the larger categories
(note the non-linear scale on the abscissa of Figure 13), the negative impact of these
poorly predicted programs is minimized, as shown in Figure 13, resulting in a total
improvement of 91 Billion BY 13 dollars, reallocating approximately 9 percent of the

$1.01 trillion dollar portfolio modeled by the dataset. If the sample of MDAPS in this
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study is assumed similar to those in the current DoD MDAP portfolio (USD Comptroller,
2013), then this 9 percent reallocation equates to approximately $6.25 billion per year

(BY13 dollars).

Weighting Effects

The dataset includes 22 programs that are not complete, and these observations
are weighted to reduce their influence on the regression parameters. The inclusion of a
weighting methodology, explained in Chapter 3, lowers the BIC of the model, indicating
that it is beneficial. However, when the model generated with weighted observations is
compared to the same model generated with no weighting, the results are remarkably
similar. The predictive model, generated without the weighting methodology, performs
less than one percent worse, with 30.9 percent model-corrected error in the initial
estimate. This difference in the average model performance with and without weighted
observations is not practically significant.

The low impact of the weighting is likely due to the fact that incomplete programs
make up less than a third of the total programs (22 of the 70) and the average maturity in
these incomplete programs is 74 percent (measured by Percent Expended). Also, the
observed absolute cost estimate error, measured in the final quarter of the program, is
low, only about 8 percent. The error in the last third of program life—where expenditure
is greater than 66 percent—is only about 10 percent. This low error implies that these
incomplete but mature programs are already an adequate approximation of the final

program cost, minimizing the impact of the weighting methodology.
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Chapter Summary

The validated predictive model is capable of significantly reducing the acquisition
estimate error, even from the very first estimate. This meaningful result allows
reallocation of 9 percent of the MDAP portfolio. Several trends are apparent that help to
focus model usage, increasing its average performance even further. Of the 30 high-
growth programs (programs in the upper three cost growth groups) 27 of these are
improved by the validated model (90 percent). Also, the validated model performs well
for all programs except the very smallest—those with a final expenditure of less than $2
billion (BY13). Finally, the model is best employed early in the program life, with the
model losing one quarter percent of its efficacy for every additional percent expended.
When the model is applied to the most favorable subset of the sample—the first estimate
of a high-growth program with eventual cost over $2B—the average absolute error is
reduced by approximately 45 percent.

The combined effect of using the validation model to correct all 70 initial cost
estimates in the dataset is shown in Figure 14. The histogram of corrected and
uncorrected CGFs, measured from the first estimate (such as the one in Figure 3, on page
56) are used to fit a Gamma distribution. The Kolmogorov-Smirnov test shows that both
distributions in Figure 14 are acceptable matches at the o= 0.05 level, despite the low
sample size of only 70 data points used to fit these curves. The model-corrected
distribution is shown to be more symmetrical, (implying a lower bias towards
underestimation) with an average CGF closer to the desired value of 1.0, and a lower

variance from this value. Using the model-corrected CGF, 38 of the 70 programs have a
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final cost within 25 percent of the estimate, compared to only 25 programs using the

program office estimate. The difference in the distributions has a p-value of 0.011,

significant at the o= 0.05 level.
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V. Conclusions and Recommendations

Introduction

The macro-stochastic models are shown to reduce the errors in DoD
acquisition cost estimates by meaningful amounts. However, it is necessary to discuss
the assumptions behind these predictions, and highlight limitations for model use. This
chapter revisits the research questions from Chapter 1, and answers them using the data
from Chapter 4. Finally, questions resulting from this effort are presented in order to

stimulate future work in the area of macro-stochastic cost estimation.

Model Use

Chapter 4 summarizes model performance by reporting error reduction from
different perspectives. For example, the model reduces more error on high-risk
programs, and on programs with a final expenditure greater than $2 billion dollars
(BY13). However, the average number of estimates improved by the model drops below
50 percent—the figurative “coin flip”—when programs are only 30 percent expended.
This relationship also holds for the absolute average model-corrected error, which
becomes equivalent to the program office error when a program is around one-third
expended. This degradation in model performance implies a window for use of the
validated prediction model. However, note that some of the variables in the predictive
model (and therefore, in the validation model) measure some aspect of change in a
program. For example, quantity change is a significant parameter, and this “change”
variable cannot be measured in the first year. For this reason, the predictive model will

sometimes improve over the first quarter of program life as shown in Table 11.
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However, since estimate corrections suggested by the model after a program is
approximately one-third expended are not expected to be significantly better than the
original estimate, it should not be employed past this maturity threshold.

The confidence bounds placed around the predicted CGF show that 90 percent of
the observations are captured within +35 percent of the predicted value. This interval
may seem wide, but 51 percent of initial estimates fall outside of this range. Of the 30
programs in the high-growth groups, 20 of them (66.6 percent) fall outside of the 35
percent confidence bounds. These intervals (which attempt to enclose the true value)
should not be confused with the data presented in Figure 10 (which only attempts to
make estimates better). In other words, even though the +35 percent encloses the initial
estimate about half of the time, 71 percent of initial estimates are made better by at least
correcting in the direction indicated by the predicted CGF. Also, 90 percent of the
programs in the high-growth program groups are made better by correcting in the
direction indicated by the predicted CGF.

It is important to understand that while a few individual programs may be poorly
predicted by the model due to erratic or unusual trends in their estimate errors, the
purpose of the model is to inform resource allocation at the portfolio level where many
programs will be monitored and average model performance is more relevant. As such,
the models are not a justification for management reserve—a practice forbidden in DoD
budgeting—nor is it a tool to assist program managers in identifying risks to their
programs. In fact, since the underpinnings of the macro-stochastic approach rely upon

correlation, not causation, intimate knowledge of the models by low-level decision
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makers could alter the nature of the observed relationships, rendering the models less
effective or even useless.

Finally, the macro-stochastic model should not be used to drive acquisition reform
or assign blame for cost growth. Since mixed models fit groups of programs to their
unique estimate error trends, it can be misleading to evaluate the meaning of model
parameters by examining the magnitude (and direction) of their coefficients. For
example, the regression might show that program size (as measured by estimated
acquisition cost) is uncorrelated with cost growth, but this relationship might be an
average of some programs where the correlation is highly negative, and other programs
where the exact opposite relationship holds true. Also, this acquisition cost variable
would only be correlated with cost growth—that is, cost growth is almost certainly not
caused by program size. Finally, transformations performed on some variables (such as
the inverse cube root of acquisition cost) deter meaningful interpretation of the effect of

these independent variables upon the dependent variable.

Significant Parameters

In addition to the interpretation difficulties imposed by random effects and
variable transformations, the program grouping algorithm employed for the predictive
model further obfuscates variable significance. Selection of significant predictors of cost
growth to group programs into the six CGF groups convolves the effect of these
parameters with the intercept term for the group. In other words, the parameters are
present in the model, but it is not possible to determine their effects on the CGF
individually. Interestingly, Table 13 shows that when these variables are considered
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alongside the list of predictive model parameters, the combined list is nearly a 90 percent
match for the list of significant, descriptive model parameters. While we can say with
confidence that these are among the most significant model parameters—recall that not
all 3.77x10% combinations were tested—the significance level of a specific parameter

cannot be determined.

Table 13. Comparison of Model Parameters (Main Effects)

Descriptive Model Predictive Model CGF Groups
Dev Prod Ratio «4» Dev Prod Ratio
Acquisition Cost<1» Acquisition Cost
QtyChange <» QtyChange
Year Count <%  Year Count

YrsFunded » YrsFunded
Iteration  « » |teration
Type < » Type

EstVarPct Service Component Joint

DevCount

Impact of Key Assumptions

One of the key assumptions implicit in the selected first-order autoregressive
AR(1) covariance structure is that of independence between programs. This assumption
allows for the selection of simpler covariance structures, although known violations exist
in this dataset. For example, Cancian’s 2010 article mentions the Navy’s cuts to the new
DDG-1000 destroyer in favor of purchasing more of the older DDG-51 ships (Cancian,

2010)—Dboth of these programs are in the dataset. Also, the Army’s “Longbow”
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helicopter, and the “Longbow Hellfire” munition developed for that helicopter, are
certainly correlated programs. In fact, mentioning these specific examples is perhaps
myopic, given the likelihood that all programs are correlated to some degree since they
are subject to the same economic, political and budgetary constraints. These macro-
macro-level variables are beyond the scope of this study, though they likely play a role in
driving cost estimate error.

Another assumption is that the program’s estimate of its final cost, generated at 90
percent completion, is acceptably accurate to allow correction to the unknown true cost.
As explained in Chapter 2, Tracy’s 2005 study of “Estimate at Completion” indicates that
estimates generated at 92.5 percent can be considered “final” costs (Tracy, 2005).
However, it is not necessary to have the exact final cost in order to build a useful model.
The programs in the database for this research exhibit approximately 10 percent absolute
error in the last third of program life, and approximately 8 percent in the last quarter. The
additional 2.5 percent expenditure over the required 90 percent would occur in less than a
year in almost every program evaluated. Also, 22 of the 48 completed programs’ final
estimates are generated with expenditures that exceed 90 percent, due to the annual report
cycle. Therefore, the error in the 90 percent cost estimate is likely only a few percent
different from the 92.5 percent estimate, except in a few rare cases where large changes
were made at the very end of the program. The lack of effect from the program weights

further bolsters this argument.
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Generalizability

One major limitation to generalizability is the similarity between the programs
used in this study, and the rest of the DoD acquisition population. As discussed, only
MDAPs that meet relatively restrictive filtering criteria are used in the analysis, and that
fact reduces the generalizability of inferences drawn from the resulting model. This
study represents a subset of all DoD acquisition programs and uses assumptions to
overcome the myriad challenges in SAR analyses that are discussed in Chapter 2.
Inferences drawn from this research should be limited to DoD programs that fall within
the range of the filtering criterion. The results presented in Chapter 4 should not be used
to draw inferences on non-MDAP programs, MAISs, or pre-Milestone B programs, as
these may behave very differently. These filters notwithstanding, certain assumptions are
made to expand the dataset and allow as many programs into the dataset as possible. For
example, the program completion threshold is largely determined through logistical
considerations (though it exceeds the completion thresholds used in other studies). Also,
the weighting scheme, designed to reduce the influence of these incomplete programs,
does not produce a meaningful difference on the parameter estimates, but expanding the
dataset further may introduce programs that require weighting to reduce the effect on the
model.

Extrapolation is also an issue. Table 1 illustrates that each nominal program
variable used in the study has a sample size sufficient for robust estimation. However,
the combination of multiple factors reduces this sample size. For example, inferences

about Army programs may be drawn from a sample of 16 programs, while inferences
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about Army munition programs must be drawn from a sample of only three programs.
Furthermore, all possible combinations of all factor-levels are not represented in the data.
For example, using the model to predict the CGF of an Air Force ground vehicle might

produce poor results, since no such programs exist in the dataset.

Investigative Questions Answered
The three investigative questions from Chapter 1 may now be answered using the
data from the analysis presented in Chapter 4.

1. What program characteristics are the most significant predictors of
acquisition cost growth? As discussed above, it is difficult to attribute
significance to predictors individually, but the list of identified predictors is
similar between the predictive and descriptive models. Both models incorporate
the program acquisition cost, the year count, the expected number of funding
years, the program iteration, and the type of program. Additionally, the ratio of
development to production years, and any changes in the procurement quantity
are identified as significant in both models. The descriptive model includes the
variance due to estimating differences, though this variable is not present in the
predictive model. The predictive model includes the service component, joint
status, and the number of development APBs, though none of these variables are
present in the descriptive model.

2. How can the selected factors be used to modulate the acquisition cost
estimate, reducing the error? As demonstrated in Chapter 4, correcting
acquisition cost estimates is achieved by conducting a regression using the CGF
predictors, and then multiplying this predicted CGF for some year by the estimate
in that year. When applied to the first estimate, this methodology reduces cost
estimate error by over a third. When applied in the most advantageous
conditions, (applied early to high-risk, high-dollar programs)it reduces cost
estimate error by nearly half.

3. What level of confidence is achieved by predicting acquisition cost growth
using significant factors that are available at program initiation? Bounds
with fixed half-widths are placed around the validated model-predicted CGFs to
assess confidence. Bounds of +35 percent capture 90 percent of the true values,
and bounds of +45 percent capture 95 percent of the true values. These +£35
percent bounds are sufficiently narrow that they do not enclose the initial program
office estimate about half the time. While the other half of the initial estimates
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are enclosed by these bounds, 71 percent of all estimates are improved by the
validated model when using the predicted CGF to correct the estimate.

Future Research

Many of the assumptions and limitations mentioned in this research may be used
as inspiration for future research in the still-nascent area of macro-stochastic estimation.
Several of these future research ideas are presented below.

The completion criteria placed on programs in the dataset do not require programs
to be complete, since this would reduce the sample size by a third. However, a similar
analysis performed on the program development phase would consider programs to be
complete when they reach Milestone C, vastly increasing the number of programs
eligible for analysis, and allowing more recent programs into the study. Furthermore,
increasing the scope of the study to include economic and political indicators could
increase estimate accuracy and predictive validity of the model.

This research uses the “mixed” procedure available in SAS 9.3 to perform the
mixed-model regression. However, the more flexible generalized linear mixed model
procedure known as the glimmix procedure is also available that uses different methods to
optimize the parameter estimates. Preliminary examination of the dataset with this tool
shows that it produces slightly different results, but allows some of the more complex
covariance structures to converge. The “unstructured” covariance structure, for example,
could possibly account for some of the correlations between programs, reducing the
variance and increasing model power. However this structure frequently would not
converge when using the mixed procedure. Using glimmix would likely be necessary for
any analyses that attempts to analyze larger datasets with fewer simplifying assumptions.
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Finally, the assumption of program “completion” might be analyzed by extracting
cost at completion from DCARC to refine final estimates. As stated above, these results
are unlikely to produce considerably different results, but it could increase the face-
validity of the method to stakeholders and decision makers, while also serving as a

validation for recent work on estimate accuracy near completion.

Conclusion

The macro-stochastic technique provides an economically and statistically
meaningful improvement over initial program estimates, reducing cost errors by 18.7
percent, on average, when applied to any of the estimates for the programs in this dataset.
However, the most logical usage for the model is to apply it to the initial estimate, and
then utilize it to assist affordability decisions over the first third of program life when
traditional estimates of program cost are at their worst. If future programs are expected
to perform similarly to those from the recent past, then this initial application of the
model is expected to guide a more efficient allocation of about 9 percent of the MDAP
portfolio—approximately $6.24 billion, annually. Such a tool could prove invaluable to
high-level decision makers and acquisition authorities who must make assessments of
programs’ affordability based on little knowledge of its true cost. In the current
environment of budgetary reduction, efficient allocation of acquisition resources is

crucial—macro-stochastic cost estimation is an excellent tool for this application.
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Appendix A

Descriptive Model SAS Code

proc import out=work.mdaps
datafile="D:\Documents\School\THESIS\MDAPsNew.xlsx"
DBMS=XLSX;

Run;

data mdaps2; set mdaps;
logAcqgCost=1log (AcgCost) ;
sgrtAcqgCost=sqgrt (AcgCost) ;
sgrtProdCount=sqgrt (ProdCount) ;
logFEE=10g (FEE) ;
logQtyChange=log (QtyChange) ;
logYearCount=log (YearCount) ;
sqrtDPR=sqgrt (Dev_Prod Ratio);
logYrsFunded i=log(YrsFunded i);
BoxFee=Fee** (-1/3);

run;

ods html newfile=proc;
ods graphics on;
proc mixed data=mdaps2;

class Name iter type;
Weight Weight;

model BoxFEE=iter type iter*type sqrtDPR sgrtAcqgCost EstVarPct
logQTYChange logYearCount type*logQTYChange YrsFunded i/solution
residual OUTP=mdaps20utput;

Random int iter type QTYChange type*logQTYchange EstVarPct sqrtDPR
sgrtAcqgCost/sub=Name group=Type type=AR(1l);

run;

Quit;

ods graphics off;

proc export data=work.mdapsZoutput
OUTFILE="D:\Documents\School\THESIS\MDAPsOutDesc FINAL"
dbms=csv replace;

Run;
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Descriptive Model Outputs

Number of Observations

umber of Observations Read 937
umber of Observations Used 937
umber of Observations Not Used 0

Covariance Parameter Estimates

Cov Parm | Subject | Group

Variance
AR(1)
Variance
AR(1)
Variance
AR(1)
Variance
AR(1)
Variance
AR(1)
Variance
AR(1)
Variance
AR(1)

Residual

MName | Type Awiation

MName | Type Awiation

MName | Type Electronic
MName | Type Electronic
Mame | Type Ground Vehicle
Mame | Type Ground Vehicle
MName | Type Maritime

MName | Type Maritime

Mame | Type Munition

MName | Type Munition

MName | Type Space

MName | Type Space

MName | Type Space Launch
Mame | Type Space Launch

Fit Statistics
-2 Res Log Likelihood | -8219.1
AIC (smaller is better) | -8191.1
AICC (smaller is better) | -8190.7
BIC (smaller is better) | -8159.7

Null Model Likelihood Ratio Test
DF | Chi-Square | Pr= ChiSq
13 6559.81 =.0001
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Estimate
0.000112
-0.1816
0.000121
0.2307
0.000116
0.3458
0.000097
0.2085
0.000264
0.4225
0.000304
0.6327
0.000017
-1.0000
1.208E-6



Effect
Intercept
Iter

Iter

Iter

Type
Type
Type
Type
Type
Type
Type
IterType
IterType
IterType
IterType
IterType
Iter*Type
Iter*Type
Iter*Type
Iter*Type
Iter*Type
IterType
IterType
IterType
IterType
sqrtDPR
sqrtAcqCost
EstVarPct
logQtyChange

Iter

Mod

New

Mod
Mod
Mod
Mod
Maod
New
MNew
MNew
MNew
Mew
MNew
MNew
Var

Var

Solution for Fixed Effects

Type

Awiation
Electronic
Ground Vehicle
Maritime
Munition
Space

Space Launch
Awiation
Ground Vehicle
Maritime
Munition
Space Launch
Aviation
Electronic
Ground Vehicle
Maritime
Munition
Space

Space Launch
Awiation

Maritime

Estimate | Standard Error

0.3453
0.02211
0.001788
0
0.01190
-0.01467
-0.00600
0.009938
0.009512
-0.00357
0
-0.03713
-0.03361
-0.01733
-0.02749
0
-0.02709

oo o o o o o o

-0.01069

0.01164
0.009353
0.000862
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0.02863
0.03006
0.02815

0.03046
0.01107
0.01505
0.009222
0.01430
0.01917

0.03324
0.02318
0.03057
0.04160

0.03057

0.007027
0.001167
0.001369
0.002275

DF | t Value | Pr = [t

0
0

o o o o o o

o o o o

69
69
51

12.06
0.74
0.06

0.39
-1.33
-0.40

1.08

0.67
-0.19

-1.12
-1.45
-0.57
-0.66

-1.52

9.97  <.0001
475 <0001
0.38 0.7064



logQtyChange*Type Aviation
logQtyChange*Type
logQtyChange*Type
logQtyChange*Type Maritime

Electronic

logQtyChange*Type Munition
logQtyChange*Type Space
logQtyChange*Type

Type 3 Tests of Fixed Effects

Effect

Iter

Type

lter*Type
sqrtDPR
sqrtAcqCost
EstVarPct
logQtyChange
logYearCount
logQtyChange*Type
YrsFunded_i

0.004254
0.009853

Ground Wehicle ' 0.005663

0.01916
0.02596
0.02945

Space Launch 0

-0.00003

0.003858 51

0.005634 51

0.006623 51

0.005017 51

0.007404 51

0.009773 51

0.000024 ' G605

Num DF | Den DF | F Value

2
6
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0

0

0

0
69
69
51
605
51
605

0.19
1.30
0.64
23
99.39
2255
39.79
3947
525
1.54

Pr=F

=.0001
<0001
<0001
=.0001
0.0003
0.2147

1.10
1.75
0.86
3.82
351
3.01

-1.24

0.2754
0.0863
0.3965
0.0004
0.0010
0.0040

0.2147



Predictive Model SAS Code

proc import out=work.mdaps
datafile="D:\Documents\School\THESIS\MDAPsNew.x1lsx"
DBMS=XLSX;

Run;

data mdaps2; set mdaps;
logQtyChange=1log (QtyChange) ;
sgrtQtyChange=sqgrt (QtyChange) ;
logFEE=10g (FEE) ;
logYearCount=1log(YearCount) ;
sgrtYearCount=sqgrt (YearCount) ;
logYrsFunded i=log(YrsFunded i);
sqrtYrsFunded i=sqrt (YrsFunded 1i);
sgrtDevCount=sqgrt (devcount) ;
sgrtProdCount=sqrt (prodcount) ;
sgrtYearCount=sqgrt (YearCount) ;
sgrtAcqgCost=sqgrt (AcgCost) ;
logAcqgCost=1log (AcgCost) ;
sgrtUCBreachCum=sqgrt (UCBreachCum) ;
sqrtDPR=sqgrt (Dev_Prod Ratio);
BoxFee=Fee** (-1/3);
BoxAcgCost=AcqCost** (-1/2) ;

run;

quit;

ods tagsets.excelxp file='Pred allobs.xls' STYLE=statistical
options ( embedded titles='yes' sheet interval='proc' );

ods html newfile=proc;

ods graphics on;

title "Full Predictive Model";

proc mixed data=mdaps2;
class comp PCat;

model BoOxXFEE = comp sqrtDPR comp*sqrtDPR devcount BoxAcgCost
sgqrtQtyChange sqrtYearCount BoxAcgCost*sgrtYearCount/solution
residual OUTP=mdaps2Qutput;

Random int logAcgCost sqrtQtyChange/sub=PCat type=AR(1l) Solution;
Weight Weight;

run;

ods tagsets.excelxp close;
quit;
ods graphics off;

proc export data=work.mdapsZoutput
OUTFILE="D:\Documents\School\THESIS\PredFINAL"
dbms=csv replace;

Run;
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Predictive Model Outputs

Number of Observations

Number of Observations Read 937

Number of Observations Used 937

Number of Observations Not Used

Covariance Parameter Estimates

Cov Parm | Subject = Estimate

Variance Pcat 0.03401

AR(1) Pcat -0.1675

Residual 0.006410
Fit Statistics

-2 Res Log Likelihood |-1803.2
AIC (smaller is better) | -1797.2
AICC (smaller is better) | -1797.2
BIC (smaller is better) |-1797.8

Null Model Likelihood Ratio Test
DF | Chi-Square | Pr= ChiSq
2 195.70 =.0001

Solution for Fixed Effects

Effect Comp Estimate Standard Error
Intercept 0.09554 0.1282
Comp AF -0.04661 0.01044
Comp Army | -0.00981 0.01115
Comp Navy 0

sqrtDPR -0.06840 0.01343
sqrtDPR*Comp AF 0.08130 0.01668
sqrtDPR*Comp Army 0.08399 0.01783
sqrtDPR*Comp Mawy 0

DevCount -0.00419 0.001703
BoxAcqCost 2.2256 1.2885
sqriQtyChange 0.1904 0.07693
sqrtYearCount 0.002008 0.006550
BoxAcqCos*sqrtYearCo 1.5185 0.3615

94

0
DF | t Value
5 0.75
910 -4 46
910 -0.88
910 -5.09
910 487
910 47
910 -2.46
910 1.73
5 248
910 0.31
910 419

Pr> i
0.4897
<0001
0.3794

<.0001
=.0001
=.0001

0.0140
0.0844
0.0562
0.7593
<.0001



Solution for Random Effects

Effect Pcat  Estimate 5td Err Pred | DF |t Value Pr= [t
Intercept A 0.1085 0.1309 910 0.83 | 0.4073
logAcqCost A 0.04453 0.01666 | 910 2.67 0.0077
sqrtQtyChange | A 0.1289 01117 910 1.15 1 0.2490
Intercept B -0.03210 0.09887 | 910 -0.32  0.7455
logAcqCost B 0.07533 0.01518 | 910 496 <0001
sqrtQtyChange B 0.05342 0.08208 | 910 0.65 | 0.5154
Intercept C 0.2201 0.09222 | 910 239 0.0172
logAcqCost C 0.06433 0.009961 910 6.46  =.0001
sqrtQtyChange | C 01424 0.07870 | 910 -1.81  0.0708
Intercept D -0.1657 0.1004 910 -1.65  0.0992
logAcqCost D 0.09729 0.01176 | 910 8.28  =.0001
sqrtQtyChange | D -0.08789 0.07934 | 910 -1.11 | 0.2682
Intercept E 0.2454 0.09214 | 910 2,70 0.00M
logAcqCost E 0.05782 0.01030 | 910 561 =.0001
sqrtQtyChange E 01735 0.07792 | 910 -2.23  0.0262
Intercept F 04544 0.1242 910 -3.66  0.0003
logAcqCost F 0.1093 0.01498 | 910 7.30  =.0001
sqrtQtyChange | F 0.1464 0.08255 | 910 1.77 | 0.0766
Type 3 Tests of Fixed Effects
Effect Num DF | Den DF | F Value | Pr=F
Comp 2 910 10.01 | <.0001
sqrtDPR 1 910 3.23 00728
sqrtDPR*Comp 2 910 14.54 | <.0001
DevCount 1 910 6.06  0.0140
BoxAcqCost 1 910 2.98  0.0844
sqrtQtyChange 1 5 6.13  0.0562
sqrtYearCount 1 910 0.09 07593
BoxAcqCos*sqrtYearCo 1 910 17567 <0001
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Validation SAS Code

ODS graphics on;
$MACRO sqglloop;
PROC SQL;

Quit;

Create Table prognames as
Select Distinct Name from mdaps2
ORDER BY Name;
select count (*) into :nobs from prognames;

ods tagsets.excelxp file='Validation.xls' STYLE=statistical

%DO i=

*This

*this

*Here

options ( embedded titles='yes' sheet interval='proc' );
1 %TO &nobs;
takes each name and places it into a variable;
PROC SQL noprint;
select Name into :names from prognames (firstobs=&i obs=&i);
Quit;

deletes the program with the currently selected name;
data validate; set mdaps2;

IF Name="&names" THEN Delete;

Run;

is the regression code from below, running without the selected

program;

title "&names";

proc mixed data=validate noitprint noclprint noinfo;

class comp PCat;

model BoxFEE = comp sqrtDPR comp*sqrtDPR devcount BoxAcqgCost
sgrtQtyChange sqgrtYearCount BoxAcgCost*sgrtYearCount
/solution residual OUTP=mdaps20utput;

Random int logAcgCost sqrtQtyChange/sub=PCat type=AR(1l) Solution;

Weight Weight;

run;
*Now we output to a workbook, with a sheet named after the omitted
program;

SEND;

ods tagsets.excelxp close;
$MEND ;
dm log 'clear' output;
%sqglloop;

96



Bibliography

Arena, M. V., Leonard, R. S., Murray, S. E., & Younossi, O. (2006). Historical Cost
Growth of Completed Weapon System Programs. Santa Monica, CA: RAND
Corporation.

Box, G. E., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal
Statistical Society, B(26), 211-252.

Cancian, M. F. (2010). Cost Growth: Perception and Reality. Defense Acquisition
Research Journal.

Defense Acquisition Management Information Retrieval System. (2014, January 13).
http://www.acq.osd.mil/damir/

Defense Acquisition University. (2013). Defense Acquisition Guidebook. Retrieved
January 15, 2014, from https://dag.dau.mil/Pages/Default.aspx

Drezner, J. A., Jarvaise, J. M., Hess, R. W., Hough, P. G., & Norton, D. (1993). An
Analysis of Weapon System Cost Growth (MR-291-AF). Santa Monica, CA:
RAND Corporation

Ferguson, D. R, et al. (2011). Quantifying Uncertainty in Early Lifecycle Cost
Estimation (CMU/SEI-TR-025). Carnegie Mellon University.

Government Accountability Office. (2008). A Knowledge-Based Funding Approach
Could Improve Major Weapon System Program Outcomes (GAO-08-619).
Washington: GAO.

Government Accountability Office. (2009). Cost Estimating Guide. Washington: GAO.

Government Accountability Office. (2012a). Defense Acquisitions: Assessments of
Selected Weapon Programs (GAO-12-400SP). Washington: GAO.

Government Accountability Office. (2012b). Improvements Needed to Enhance
Oversight of Estimated Long-Term Costs for Operating and Supporting Major
Weapon Systems (GAO-12-340). Washington: GAO.

Hough, P. G. (1992). Pittfalls in Calculating Cost Growth from Selected Acquisition
Reports (N-3136-AF). Santa Monica, CA: RAND Corporation.

97



Jarvaise, J. M., Drezner, J. A., & Norton, D. (1996). The Defense System Cost
Performance Database. Santa Monica, CA: RAND Corporation.

Kadish, R., et al. (2005). Defense Acquisition Performance Assessment. Washington:
GPO.

Kincaid, C. (2005). Guidelines for Selecting the Covariance Structure in Mixed Model
Analysis. 30th SAS User Group International. Philadelphia, PA.

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied Linear Regression Models.
New York: McGraw-Hill.

Office of the Undersecretary of Defense, Comptroller. (2013). National Defense Budget
Estimates for FY 2014. Washington: GPO.

Patetta, M. (2002). Longitudinal Data Analysis with Discrete and Continuous Responses
Course Notes. Cary, NC: SAS Institute.

Ryan, E. (2012, September). Cost-Based Decision Model for Valuing System Design
Options, Dissertation. Wright-Patterson AFB, OH: Air Force Institute of
Technology.

Ryan, E., Schubert-Kabban, C., Jacques, D., & Ritschel, J. (2013). A Macro-Stochastic
Model for Improving the Accuracy of Department of Defense Life Cycle Cost
Estimates. Journal of Cost Analysis and Parametrics, 6(1), 43-74.

SAF/FMCE. (2012). Air Force Inflation Calculator.

Smirnoff, J., & Hicks, M. (2007). The Impact of Economic Factors and Acquisition
Reforms on the Cost of Defense Weapon Systems. Elsevier Inc.

The White House. (2014). Office of Management and Budget Historical Tables.
Retrieved January 13, 2014, from www.whitehouse.gov/OMB/budget/Historicals.

Tracy, S. P. (2005). Estimate at Completion: A Regression Approach to Earned Value.
MS Thesis, AFIT/GCA/ENC/05-04. School of Engineering and Management, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2005:
Print.

U.S. House of Representatives, 98th Congress (Version Date: 10/19/1984). H.R. 5167,
Department of Defense Authorization Act of 1985. Washington: GPO

98



REPORT DOCUMENTATION PAGE o PProved 165

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
27-03-2014 Master’'s Thesis Aug 2012 — Mar 2014

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Macro-Stochastic Approach to Improved Cost Estimation

for Defense Acquisition Programs 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
DeNeve, Allen, J, Captain, USAF

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Air Force Institute of Technology NUMBER
Graduate School of AFIT-ENV-14-M-20

2950 Hobson Way
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Dr. Alan Ashworth 11. SPONSOR/MONITOR'S REPORT
Tri-Service Research Laboratory NUMBER(S)

4141 Petroleum Road
Fort Sam Houston, TX 78234
210-539-8504

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A. Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in
the United States.

14. ABSTRACT

Inaccurate cost estimates are a recurrent problem for Department of Defense (DoD) acquisition
programs, with cost overruns exceeding billions of dollars each year. These estimate errors hinder the
ability of the DoD to assess the affordability of future programs and properly allocate resources to
existing programs. In this research, the author employs a novel approach called “macro-stochastic”
cost estimation for significantly reducing cost estimate errors in Major Defense Acquisition Programs
(MDAPS). To achieve this reduction, the author first extracts and catalogs key programmatic data from
936 Selected Acquisition Reports. The author then analyzes historical trends in the data using mixed-
model regression with high-level descriptive program parameters. Based on these trends, the model is
found to reduce estimate errors by 18.7 percent on average, when applied to a randomly selected,
historical cost estimate. However, the model is most beneficial when applied early in program life;
when applied to the first cost estimate of each program in the database, the macro-stochastic
technique reduces cost estimate error by over one-third. This statistically and economically significant
reduction could potentially allow for reallocation of $6.25 billion, annually, if applied consistently to the
DoD’s portfolio of MDAPs.

15. SUBJECT TERMS
Cost estimation, macro-stochastic, cost growth, SAR, acquisition baseline

16. SECURITY CLASSIFICATION OF: 17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT | OF PAGES LtCol Erin T. Ryan, AFIT/ENV
a. b. c. THIS 19b. TELEPHONE NUMBER (Include Area Code)
REPORT | ABSTRACT | PAGE
U u u uu 109 (937) 785-3636 x3348 Erin.Ryan@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

99




